Truth Values
An interpretations $I$ assigns to every atomic proposition $p$ a truth value: \(I(p)\in\{0,1\}\)
This means:
- If $I(p)=1$, then $p$ is called true under the interpretation $I$.
- If $I(p)=1$, then $p$ is called false under the interpretation $I$.
Given an assignment $I$ we can computer the truth value of compound formulas step by step by using truth tables.
Negation
The negation $\neg P$ of a formula $P$. It is not the case that $P$:
$P$ | $\neg P$ |
---|---|
1 | 0 |
0 | 1 |
Conjunction
The conjunction $(P\wedge Q)$ of $P$ and $Q$. Both $P$ and $Q$ are true:
$P$ | $Q$ | $(P\wedge Q)$ |
---|---|---|
1 | 1 | 1 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 0 |
Disjunction
The disjunction $(P\vee Q)$ of $P$ and $Q$, at least one of $P$ and $Q$ is true:
$P$ | $Q$ | $(P\vee Q)$ |
---|---|---|
1 | 1 | 1 |
1 | 0 | 1 |
0 | 1 | 1 |
0 | 0 | 0 |
Equivalence
The equivalence $(P\Leftrightarrow Q)$ of $P$ and $Q$, $P$ and $Q$ take the same truth value:
$P$ | $Q$ | $(P\Leftrightarrow Q)$ |
---|---|---|
1 | 1 | 1 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
Implication
The implication $(P\Rightarrow Q)$, if $P$ then $Q$:
$P$ | $Q$ | $(P\Rightarrow Q)$ |
---|---|---|
1 | 1 | 1 |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
Truth Under an Interpretation
So, given an interpretation $I$, we can compute the truth value of any formula $P$ under $I$:
- If $I(p)=1$, then $p$ is called true under the interpretation $I$.
- If $I(p)=1$, then $p$ is called false under the interpretation $I$.
Example
$p_1$ | $p_2$ | $\neg p_2$ | $\neg p_1$ | $(p_1\wedge\neg p_2)$ | $(p_2\wedge\neg p_1)$ | $P$ |
---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 0 | 0 | 1 |
Thus the interpretations $I$ making $P$ true are:
- $I(p_1)=1$ and $I(p_2)=1$
- $I(p_1)=0$ and $I(p_2)=1$
- $I(p_1)=0$ and $I(p_2)=0$