Skip to content
UoL CS Notes

Description Logic - Tableaux Method

COMP304 Lectures

Decision Method

It is important to find a decision method for the consistency checking problem.

The tableaux method allows us to solve this problem but only for acyclic knowledge bases.

Using Concepts

An atomic concept $A$ directly uses an atomic concept $B$ if there is a subsumption $A\sqsubseteq X$ or $A\equiv X$ in $\mathcal T$ such that $B$ occurs in $X$.

For example if the following is in $\mathcal T$:

\[\text{granparent}\equiv\text{person}\sqcap\exists\text{hasChild}.\text{parent}\]

then $\text{grandparent}$ directly uses $\text{person}$ and $\text{parent}$.

An atomic concept $A$ indirectly uses an atomic concept $B$ if there is a finite sequence $A_1, \ldots, A_n$ of atomic concepts such that $A$ directly uses $A_1$, $A_1$ directly uses $A_2, \ldots,A_{n-1}$ directly uses $A_n$ and $A_n$ directly uses $B$.

For example if the following are in $\mathcal T$:

\[\begin{aligned} \text{mother}&\equiv\text{parent}\sqcap\text{female}\\ \text{parent}&\equiv\text{person}\sqcap\exists\text{hasChild}.\top \end{aligned}\]

then $\text{mother}$ does not directly use $\text{person}$, but $\text{mother}$ does use $\text{person}$.

Cycles

  • A knowledge base $\mathcal K$ contains a terminological cycle if there is a concept that uses itself.
  • A knowledge base $\mathcal K$ is acyclic if:
    • $\mathcal K$ contains no terminological cycle
    • Every atomic conept occurs on the left-hand side of at most one subsumption in $\mathcal T$.

Cyclical Example

TBox
$\text{person}\equiv\text{person}\sqcap\exists\text{hasChild}.\top$
$\text{person}\sqsubseteq\exists\text{isChildOf}.\text{parent}$

The Tableaux Method

Let $\mathcal K=(\mathcal A,\mathcal T)$ be an acyclic knowledge base. Consistency of $\mathcal K$ is checked in six steps.

1. Eliminate $\sqsubseteq$

Suppose $A\sqsubseteq X$ occurs in $\mathcal T$:

  1. Add a new atomic concept $A^*$ that characterises those $X$ that are $A$.

    $A^*$ is the property that distinguishes those $X$ that are $A$ from those $X$ that are $\neg A$.

  2. Replace the concept with $A\equiv X\sqcap A^*$
  3. Call the resulting knowledge base $\mathcal K^*$.

2. Expand the TBox

  1. If $A\equiv X$ is in $\mathcal T^*$, then every occurrence of $A$ in other concept definitions can be replaced by $X$.

    Replace simple objects with their definitions.

  2. Keep replacing until no futher replacements are possible.
  3. Call the resulting TBox $\mathcal T^{*e}$.

If $\text{

3. Eliminate Defined Concepts from the ABox

Suppose $o:A$ is in $\mathcal A$ and $A\equiv X$ is in $\mathcal T^{*e}$:

  1. Then we can replace $o:A$ by $o:X$.

    We replace objects by their definitions.

  2. Call the resulting ABox $\mathcal A^e$.

4. Put the ABox in Negation Normal Form

This step removes negations from the ABox.

  1. Rewrite formulas in $\mathcal A^e$ in such a way that negations only occur immediatley in front of atomic concepts.
  2. Call the resulting ABox $\mathcal A^{en}$.

In order to put formulas in NNF, you can use the following replacement rules:

Original Replacement
$\neg\top$ $\bot$
$\neg\bot$ $\top$
$\neg\neg X$ $X$ X
$\neg(X\sqcap Y)$ $\neg X\sqcup \neg Y$
$\neg(X \sqcup Y)$ $\neg X\sqcap \neg Y$
$\neg\forall r.X$ $\exists r.\neg X$
$\neg\exists r.X$ $\forall r.\neg X$

5. Apply Completion Rules to the ABox

This step builds a tree of sets of concept and role assertions:

  • The root of the tree is $\mathcal A^{en}$.

Whenever one of the following rules can be applied to any node $\Gamma$, use them to generate new nodes:

Originals New Successors
$o:X\sqcap Y\in\Gamma$ and $o:X\notin\Gamma$ $\Gamma\cup\{o:X, o:Y\}$
$o:X\sqcup Y\in\Gamma$ and neither $o:X\in\Gamma$ or $o:Y\in\Gamma$ $\Gamma\cup\{o:X\}$ and $\Gamma\cup\{o:Y\}$
$o_1:\exists r.X\in\Gamma$ and there is no $o_2$ where $o_s:X\in\Gamma$ and $(0_1, o_2):r\in\Gamma$ Take an object $o_3$ that does not occur in $\Gamma$ and create $\Gamma\cup\{(o_1,o_3):r,o_3:X\}$
$o_1:\forall.rX\in\Gamma$ and $(o_1,o_2):r\in\Gamma$ but $o_2:X\notin\Gamma$ $\Gamma\cup\{o_2:X\}$
$o:\forall\in\Gamma$, $o:\neg A\in\Gamma$ and $o:\bot\notin\Gamma$ $\Gamma\cup\{o:\bot\}$

6. Check the Leaves for Contradictions

A set $\Gamma$ contains an immediate contradiction if $o:\bot\in\Gamma$ for some $o$.

If no more rules can be applied, check the leaves (endpoints):

  • If all endpoints contain immediate contradictions, $\mathcal K$ is inconsistent.
  • If at least one endpoint contains no immediate contradiction, $\mathcal K$ is consistent.