Skip to content
UoL CS Notes

Description Logic - TBoxes & ABoxes

COMP304 Lectures

Subsumption

In description logic we want to compare concepts to each other. Comparisons are called subsumptions.

Subsumptions are of the form:

  • $X\sqsubseteq Y$

    The objects that satisfy $X$ are a subset of the objects that satisfy $Y$.

  • $X\equiv Y$

    The objects that satisfy $X$ are exactly the same as the objects that satisfy $Y$.

TBox

Taxonomy
A categorisation of concepts.
TBox
A finite set of subsumptions that represent a taxonomy.

TBox may only contain subsumptions where the left-hand side is an atomic concept (not a complex concept).

Example TBox

  • $\text{parent}\equiv\text{person}\sqcap\exists\text{hasChild}.\top$
  • $\text{father}\equiv\text{parent}\sqcap\text{male}$
  • $\text{mother}\equiv\text{parent}\sqcap\text{female}$
  • $\text{grandparent}\equiv\text{person}\sqcap\exists\text{hasChild}.\text{parent}$

ABox

Sometimes we want to make more specific statements such as “Ann is a parent”. We do this using concept and role assertions.

Concept Assertion
The object with the name $o$ satisfies the concept $X$.
\[o:X\]

We can write:

  • $\text{Ann}:\text{Parent}$
Role Assertions
The objects with names $o_1$ and $o_2$ stand in relation $r$ to eachother.
\[(o_1,o_2):r\]

We can write:

  • $(\text{Ann},\text{Claire}):\text{hasChild}$

    This means Ann has a child called Claire.

Therefore an ABox is a finite set of concepts and role assertions.

A knowledge base $\mathcal K$ is a set of A and T boxes:

\[\mathcal K=(\mathcal A,\mathcal T)\]

Satisfaction

Assertion Satisfaction

Let $\mathcal I=(\Delta,\cdot^\mathcal I)$ be an interpretation, and let $\mathcal A$ be an ABox:

  • $\mathcal I\vDash o:X\text{ iff } o^\mathcal I\in X^\mathcal I$
  • $\mathcal I\vDash (o_1,o_2):r\text{ iff }(o_1^\mathcal I,o_2^\mathcal I)\in r^\mathcal I$
  • $\mathcal I\vDash\mathcal A\text{ iff } \mathcal I$ satisfies all assertions in $\mathcal A$

Subsumption Satisfaction

Let $\mathcal I=(\Delta,\cdot^\mathcal I)$ be an interpretation and let $\mathcal T$ be a TBox:

  • $\mathcal I\vDash X\sqsubseteq Y\text{ iff } X^\mathcal I\subseteq Y^\mathcal I$
  • $\mathcal I\vDash X\equiv Y\text{ iff }X^\mathcal I=Y^\mathcal I$
  • $\mathcal I\vDash \mathcal T \text{ iff }\mathcal I$ satisfies all subsumptions in $\mathcal T$

Knowledge Base Satisfaction

Let $\mathcal I$ be an interpretation and $\mathcal K=(\mathcal A,\mathcal T)$ be a knowledge base:

  • $\mathcal I\vDash\mathcal K\text{ iff }\mathcal I\vDash\mathcal A$ and $\mathcal I\vDash\mathcal T$

Satisfaction Example

Consider the interpretation from the previous lecture:

graph LR
y[y<br>Bob,person,parent] -->|hasChild| z[z<br>Claire,person]
x[x<br>Ann,person,parent] -->|haschild| z
u[u<br>dog]
  • $\mathcal I\vDash \text{Ann}:\exists\text{hasChild}.\text{person}$
  • $\mathcal I\nvDash\text{dog}\equiv\neg\text{parent}$

    This is because there are people who are not parents.