Description Logic - TBoxes & ABoxes
Subsumption
In description logic we want to compare concepts to each other. Comparisons are called subsumptions.
Subsumptions are of the form:
-
$X\sqsubseteq Y$
The objects that satisfy $X$ are a subset of the objects that satisfy $Y$.
-
$X\equiv Y$
The objects that satisfy $X$ are exactly the same as the objects that satisfy $Y$.
TBox
- Taxonomy
- A categorisation of concepts.
- TBox
- A finite set of subsumptions that represent a taxonomy.
TBox may only contain subsumptions where the left-hand side is an atomic concept (not a complex concept).
Example TBox
- $\text{parent}\equiv\text{person}\sqcap\exists\text{hasChild}.\top$
- $\text{father}\equiv\text{parent}\sqcap\text{male}$
- $\text{mother}\equiv\text{parent}\sqcap\text{female}$
- $\text{grandparent}\equiv\text{person}\sqcap\exists\text{hasChild}.\text{parent}$
ABox
Sometimes we want to make more specific statements such as “Ann is a parent”. We do this using concept and role assertions.
- Concept Assertion
- The object with the name $o$ satisfies the concept $X$.
We can write:
- $\text{Ann}:\text{Parent}$
- Role Assertions
- The objects with names $o_1$ and $o_2$ stand in relation $r$ to eachother.
We can write:
-
$(\text{Ann},\text{Claire}):\text{hasChild}$
This means Ann has a child called Claire.
Therefore an ABox is a finite set of concepts and role assertions.
A knowledge base $\mathcal K$ is a set of A and T boxes:
\[\mathcal K=(\mathcal A,\mathcal T)\]Satisfaction
Assertion Satisfaction
Let $\mathcal I=(\Delta,\cdot^\mathcal I)$ be an interpretation, and let $\mathcal A$ be an ABox:
- $\mathcal I\vDash o:X\text{ iff } o^\mathcal I\in X^\mathcal I$
- $\mathcal I\vDash (o_1,o_2):r\text{ iff }(o_1^\mathcal I,o_2^\mathcal I)\in r^\mathcal I$
- $\mathcal I\vDash\mathcal A\text{ iff } \mathcal I$ satisfies all assertions in $\mathcal A$
Subsumption Satisfaction
Let $\mathcal I=(\Delta,\cdot^\mathcal I)$ be an interpretation and let $\mathcal T$ be a TBox:
- $\mathcal I\vDash X\sqsubseteq Y\text{ iff } X^\mathcal I\subseteq Y^\mathcal I$
- $\mathcal I\vDash X\equiv Y\text{ iff }X^\mathcal I=Y^\mathcal I$
- $\mathcal I\vDash \mathcal T \text{ iff }\mathcal I$ satisfies all subsumptions in $\mathcal T$
Knowledge Base Satisfaction
Let $\mathcal I$ be an interpretation and $\mathcal K=(\mathcal A,\mathcal T)$ be a knowledge base:
- $\mathcal I\vDash\mathcal K\text{ iff }\mathcal I\vDash\mathcal A$ and $\mathcal I\vDash\mathcal T$
Satisfaction Example
Consider the interpretation from the previous lecture:
graph LR
y[y<br>Bob,person,parent] -->|hasChild| z[z<br>Claire,person]
x[x<br>Ann,person,parent] -->|haschild| z
u[u<br>dog]
- $\mathcal I\vDash \text{Ann}:\exists\text{hasChild}.\text{person}$
-
$\mathcal I\nvDash\text{dog}\equiv\neg\text{parent}$
This is because there are people who are not parents.