Skip to content
UoL CS Notes

Relations - 6

COMP109 Lectures

Digraph Representation

In the directed graph representation, $R$ is:

  • Reflexive if there is always an arrow from every vertex to itself.
  • Symmetric if whenever there is an arrow from $x$ to $y$ there is also an arrow from $y$ to $x$.
  • Antisymmetric if whenever there is an arrow from $x$ to $y$ and $x\neq y$, then there is no arrow from $y$ to $x$.
  • Transitive if whenever there is an arrow from $x$ to $y$ and from $y$ to $z$ there is also an arrow from $x$ to $z$.

Example 1

Let:

\[\begin{aligned} A=&\{1,2,3\}\\ R_1=&\{(1,1),(2,2),(3,3),(2,3),(3,2)\} \end{aligned}\]
graph TD
1((1)) --> 1
2((2)) --> 2
3((3)) --> 3
2 --> 3
3 --> 2
  • Reflective $\forall x:xRx$
    • True
  • Symmetric $\forall x,y: xRy\Rightarrow yRx$
    • True

    If two items, such as 1 and 2, are not connected they are not obligated to connect back. The lack of a connection doesn’t break this property.

  • Antisymmetric $\forall x,y:xRy,yRx\Rightarrow x=y$
    • False
  • Transitive $\forall x,y,z:xRy,yRz\Rightarrow xRz$
    • True

Example 2

Let:

\[\begin{aligned} A&=\{1,2,3\}\\ R_1&=\{(2,2),(2,3),(3,2),(3,3)\} \end{aligned}\]
graph TD
1((1))
2((2)) --> 2
3((3)) --> 3
2 --> 3
3 --> 2
  • Reflective $\forall x:xRx$
    • False
  • Symmetric $\forall x,y: xRy\Rightarrow yRx$
    • True
  • Antisymmetric $\forall x,y:xRy,yRx\Rightarrow x=y$
    • False

    If there are two nodes with a double arrow then this property is automatically broken.

  • Transitive $\forall x,y,z:xRy,yRz\Rightarrow xRz$
    • True

Example 3

Let $A={1,2,3},R_1={(1,1),(2,2),(3,3),(1,3)}$

graph TD
1((1)) --> 3
1 --> 1
2((2)) --> 2
3((3)) --> 3
  • Reflective $\forall x:xRx$
    • True
  • Symmetric $\forall x,y: xRy\Rightarrow yRx$
    • False
  • Antisymmetric $\forall x,y:xRy,yRx\Rightarrow x=y$
    • True
  • Transitive $\forall x,y,z:xRy,yRz\Rightarrow xRz$
    • True

Example 3

Let $A=\{1,2,3\},R_1=\{(1,3),(3,2),(2,3)\}$

graph TD
1((1)) --> 3
3((3)) --> 2
2((2)) --> 3
  • Reflective $\forall x:xRx$
    • False
  • Symmetric $\forall x,y: xRy\Rightarrow yRx$
    • False
  • Antisymmetric $\forall x,y:xRy,yRx\Rightarrow x=y$
    • False
  • Transitive $\forall x,y,z:xRy,yRz\Rightarrow xRz$
    • False

Example - Reachability

Consider some roads in a city. Some may be private and not link up, some may be one way, some may have no stopping. This is represented on the following graph:

graph TD
1((1)) --> 2((2))
2 --> 6((6))
6 --> 4((4))
4 --> 5((5))
5 --> 5
4 --> 1
1 --> 4
3((3)) --> 3

Say you start at 1 and end at 5 are you able to make this path?

If there was a transitive relation from the source to the destination then you would be able to get there in one hop.

This will be continued in the next lecture.