Calculus in the Complex Plane
Expressing Complex Functions in Terms of $u$ and $v$.
Calculate for $z=x+iy$
-
$f(z)=z^3$
$(x+iy)(x+iy)(x+iy)$
$(x^2+2ixy-y^2)(x+iy)$
$x^3+x^2iy+2ix^2y-2xy^2-xy^2-iy^3$
$u(x,y)=x^3-3xy^2$
$v(x,y)=3x^2y-y^3$
-
$f(z)=\vert z\vert+ z^2$
$(x^2+y^2)+(x+iy)^2$
$(x^2+y^2)+x^2+2ixy-y^2$
$2x^2+2ixy$
$u(x,y)=2x^2$
$v(x,y)=2xy$
Cauchy-Riemann Conditions
-
$f(z)=z^3$
$u(x,y)=x^3-3xy^2$
$v(x,y)=3x^2y-y^3$
$\frac{\partial u}{\partial x}=3x^2-3y^2$
$\frac{\partial v}{\partial y}=3x^2-3y^2$
This part is valid.
$\frac{\partial u}{\partial y}=-6xy$
$\frac{\partial v}{\partial x}=6xy$
This part is also valid.
-
$f(z)=\vert z\vert+ z^2$
$u(x,y)=2x^2$
$v(x,y)=2xy$
$\frac{\partial u}{\partial x}=4x$
$\frac{\partial v}{\partial y}=2x$
The first condition is not met.
This means that this function is only differentiate-able at $x=0$.
$\frac{\partial u}{\partial y}=0$
$\frac{\partial v}{\partial x}=2y$
This condition is also not met.
First Derivative
The first derivative of $f(z)=z^3$ is:
\[f'(z)=3z^2\]