
Calculus of 
Complex Valued Functions

Part 2: Integral Calculus



Integration of Complex Functions

• In considering extensions of Integral Calculus to the Complex 
Domain a wide range of new technical apparatus is needed. 

•Whereas classical Real integration can be linked to “area 
measurement” this ceases to be true in the Complex Plane.

•Despite the technical intricacies a central result of Complex 
Integration Theory is of huge significance in important areas of 
modern Computer Science and, especially, Algorithmics.

• These concern “counting objects” and studying the “average 
case” properties of structures.



Some Background

• Suppose 𝑓 ∶ 𝐶 → 𝐶 and 𝑝, 𝑞 ∈ 𝐶.

•How do we interpret
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• The Complex Numbers are not ordered, so (unlike the Reals) 
we cannot think in terms of 

“some area spanned by 𝑓(𝑧) between 𝑝 and 𝑞 ”

•We can, however, 

“move from (the point) 𝑝 to (the point) 𝑞 in the Complex Plane”



Curves and Contours

• Suppose we have two points – 𝑝, 𝑞 – in the Complex Plane.

• Intuitively, we understand how to “connect” these by drawing 
“some curve” from one to the other.

𝑝
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… and “Parameterized” Curves 

•We could “move between points” by describing the path to use 
(and its direction): eg either 𝛾 or 𝜇 in the example.

•When we do this, the integral concerned is defined as
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• In the special case of “closed curves” (when the start and end 
coincide) we have so-called “contour integrals”
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Meaning? 

•We have an “interval” we are interested in: Re(𝑝), Re(𝑞) .

•How do we describe “moving along a path 𝛾”?

•By using a function 𝑐 ∶ 𝑅 → 𝐶 for which
𝑐 Re(𝑝) = 𝑝 ; 𝑐 Re(𝑞) = 𝑞

• Let’s “split” this function into its Real and Imaginary parts
𝑥 𝑡 = Re 𝑐 𝑡 ; 𝑦 𝑡 = Im(𝑐 𝑡 )

• So that for any 𝑡 ∶ Re 𝑝 ≤ 𝑡 ≤ Re 𝑞 :
𝑐 𝑡 = 𝑥 𝑡 + 𝑖 ∙ 𝑦(𝑡)

• This is called a “parameterization of the curve”.



How does this help? 

• It can be shown that, when the function 𝑐 ∶ 𝑅 → 𝐶
parameterizes the curve 𝛾 joining 𝑝 and 𝑞 then:
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• The domain of the right-hand Integral is the Reals.

• So we can just use “standard” integration by writing:
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An Example: 𝑓 𝑧 = (Re(𝑧))2+𝑖(Im(𝑧))2

• Suppose the interval is 0,1 and we are looking at starting 
point 𝑝 = 0 and endpoint 𝑞 = 1 + 𝑖 .

•We could use the parameterized curve 𝑐 ∶ 𝑅 → 𝐶 with 
𝑐 𝑡 = 𝑡 + 𝑖𝑡 (0 ≤ 𝑡 ≤ 1)

𝑞 = 1 + 𝑖

𝑝 = 0

𝛾



Example continued

•We want to integrate 𝑓 𝑥 + 𝑖𝑦 = 𝑥2 + 𝑖𝑦2 between the 
points 𝑝 = 0 and 𝑞 = 1 + 𝑖 .

•We use the curve, 𝛾, with parameterization

𝑐 𝑡 = 𝑡 + 𝑖𝑡 where 0 ≤ 𝑡 ≤ 1 .
𝑐′ 𝑡 = 1 + 𝑖 ; 𝑓 𝑐 𝑡 = 𝑓 𝑡 + 𝑖𝑡 = 𝑡2 + 𝑖𝑡2
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Another example

•𝑓 𝑧 =
1

𝑧
; 𝑡 ∈ 0,1 ; 𝑐 𝑡 = 𝑒2𝜋𝑖𝑡

• This choice of 𝑐(𝑡) is the closed curve corresponding to a circle
of radius 1 about the origin:

𝜇



Example continued further

•We want to integrate 𝑓 𝑥 + 𝑖𝑦 =
1

𝑥+𝑖𝑦
around the 

circumference of the unit radius circle, 𝜇

•With parameterization

𝑐 𝑡 = 𝑒2𝜋𝑖𝑡 where 0 ≤ 𝑡 ≤ 1 .
𝑐′ 𝑡 = 2𝜋𝑖 ∙ 𝑒2𝜋𝑖𝑡 ; 𝑓 𝑐 𝑡 = 𝑓 𝑒2𝜋𝑖𝑡 = 𝑒−2𝜋𝑖𝑡
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How Complex Integrals arise in CS

• The techniques just outlined provide a very basic introduction 
to elements of Complex Analysis.

•One of the most powerful applications of these ideas arises in 
the study of counting objects.

• In this case may want to find exact or asymptotic estimates for 
the “number of objects of a particular type having size 𝑛”.

• Two tools that are often used are the notion of Generating 
Function and a result called the (Generalized) Cauchy Integral 
Formula.



A very basic Introduction

•We only have time to give a hint of these ideas and their use.
•Given a sequence:

𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛, …

• The sequence may describe “the number of objects of size 𝑛” 
using 𝑎𝑛 to denote this (𝑛 ≥ 0). Or deal with other objects. 
• For example: “the number of binary trees with 𝑛 leaves”, “the 

number of permutations of 𝑛 items that leave at least one item
in the same position”; “the sum of Τ1 𝑛2 ”

•Being able accurately to estimate such quantities is often 
crucial in analyzing how an algorithm behaves on average.



Generating Functions

• Suppose we write:

𝐺 𝑧 = ෍

𝑛=0

∞

𝑎𝑛𝑧
𝑛

• So the coefficient of 𝑧𝑛 describes the number of interest.

•How does this help?

•Because we can often manipulate the sum (depending on the 
object of interest) to obtain a “simple(r) closed form”.



An Example

•Consider the “binary tree counting” problem using:

𝐵 𝑧 = ෍

𝑛=0

∞

𝑡𝑛𝑧
𝑛

•A binary tree is either a single root node (𝑛 = 0) or a root
node and two sub-trees whose numbers of leaves added is 𝑛.

•After some manipulation this allows 𝐵(𝑧) to be written as:

𝐵 𝑧 =
1 − 1 − 4𝑧

2𝑧
• If we can find the coefficient of 𝑧𝑛 “easily” then we are done.



The Generalized Cauchy Integral Formula

• This is a very deep and remarkable result in Complex Analysis.
• If we want to find 𝑎𝑛 from a “closed form” (say 𝑔(𝑧)for 𝐺(𝑧)

its generating function) we could “differentiate 𝑔(𝑧) 𝑛 times” 
and extract the value we need. OR letting 𝑔 𝑛 (𝑧) denote this 
derivative:
•we can use the Generalized Cauchy Integral Theorem. Choose 

a closed contour, ∁, then:

𝑔(𝑛) 𝑧 =
𝑛!

2𝜋𝑖
ර
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𝑔 𝛽 𝑑𝛽

𝛽 − 𝑧 𝑛+1

• and just evaluate this at 𝑧 = 0.



Complex Integration and its use in CS

•We have (deliberately) skipped over a significant amount of 
detail, not only in discussing Generating Functions but in the 
full use of Cauchy’s Integral Formula and its consequences.

•A sufficient in-depth treatment of either topic would need an 
entire module to present.

•Complex analysis is, however, of great importance in some 
specialized areas of algorithmics: counting, finding good 
estimates of “hard to count” quantities, average-case studies.

• The aim of this section of the module has been just to give a 
basic sense of what such methods involve.


