
COMP111: Artificial Intelligence
Section 10. Learning

Frank Wolter

Content

I Introduction and Examples
I Two basic (but very popular) supervised learning algorithms:

I Naive Bayes classifier
I k-Nearest Neighbor classifier

What is Machine Learning?

I Learning is the process of converting experience into expertise
or knowledge.

I The input to a learning algorithm is training data
(representing experience) and the output is some expertise,
which usually takes the form of another computer program
that can perform some task.

Types of Learning

I Supervised Learning: the learner is presented with examples

(x1, L(x1)), . . . , (xn, L(xn)) ∈ X × Y

of labelled data xi (L(xi) is the label of xi) and the task is to
generalize the examples to a function f : X → Y. If Y is
finite, then f is also called a classifier.

I Unsupervised Learning: the learner aims to find structure
(also called patterns) in data without using examples.
Clustering data into similar ones is a typical unsupervised
learning problem.

I Reinforcement Learning: learning from rewards or punishments
in a dynamic setting in which an agent has a long-term goal
(winning a game, driving a car). Different from supervised
learning as actions of the learner are not directly classified.

We focus on supervised learning of classifiers.

Example 1: Hand-written digit recognition

Figure: Images are 28× 28 pixels

An input image is given as a vector ~x = (x1, . . . , x28×28) of real
numbers. Learn a classifier

f : { images } → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Hand-written digit recognition

I Assume we have training data:
I hand-written digits with labels from {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

I Then we have a supervised learning problem: generalise the
training data to a classifier f .

I One of the first commercial applications of machine learning
(ZIP codes).

I Take a look at MNIST database
(https://en.wikipedia.org/wiki/MNIST_database).

https://en.wikipedia.org/wiki/MNIST_database

Example 2: Face detection

Figure: Image windows

Learn a classifier

f : { image windows } 7→ {non-face, frontal face, profile-face}

Face detection

Figure: Labelled training data

Again a supervised learning problem:
I start with training data: image windows labelled with
{non-face, frontal face, profile-face}

I generalise the training data to classifier f .

Example 3: Spam Detection

I Detect whether an incoming email is spam or not.

I A supervised learning problem: learn classifier

f : {emails} → {spam, not-spam}

from labelled input data (emails).

I input data is word-count (e.g., word viagra in email indicates
spam).

I requires a learning system as “enemy” keeps innovating.

When do we need machine learning?

I When do we need machine learning rather than directly
program our computers to carry out the task at hand?

I Two aspects: the problem’s complexity and the need for
adaptivity.

Tasks that are too complex to program

I Tasks performed by animals/humans: There are numerous
tasks that we human beings perform routinely, yet our
introspection concerning how we do them is not sufficiently
elaborate to extract a well defined program.

I We have seen handwritten digit recognition, face detection,
spam detection, and so on.

I Further examples: driving, speech recognition, and playing
games.

I State of the art machine learning programs achieve quite
satisfactory results.

Tasks that are too complex to program

I Tasks beyond human capabilities: Another wide family of
tasks that benefit from machine learning techniques are
related to the analysis of very large and complex data sets.

I Examples: astronomical data, turning medical archives into
medical knowledge, weather prediction, analysis of genomic
data, Web search engines, and stock prediction.

I Meaningful information buried in data archives that are way
too large and too complex for humans to make sense of.

Adaptivity

I One limiting feature of programmed tools is their rigidity
once the program has been written down and installed, it
stays unchanged. However, many tasks change over time or
from one user to another.

I Machine learning tools (programs whose behavior adapts to
their input data) offer a solution to such issues; they are, by
nature, adaptive to changes in the environment they interact
with.

I Examples: decode handwritten text, where a fixed program
can adapt to variations between the handwriting of different
users; spam detection programs, adapting automatically to
changes in the nature of spam e-mails; and speech recognition
programs.

Supervised learning of classifiers
Given:

I A set X of possible instances to be classified (for example,
emails, hand-written digits, image windows).

I A finite set Y of classes (for example, {spam, not spam}).

I Training data (x1, L(x1)), . . . , (xn, L(xn)) ∈ X × Y. L(xi) is
called the label of xi .

I A class of functions F from X to Y from which the classifier
f is selected.

Aim:

I Compute classifier f ∈ F such that

f (xi) ≈ L(xi)

for all training data (xi , L(xi)) such that for new x ∈ X :

f (x) = y

is a good prediction for the class of x .

Towards the Naive Bayes Classifier

I One wants to learn a classifier f : X → Y.

I we have training data

(x1, L(x1)), . . . , (xm, L(xm))

I For a new x ∈ X , the classifier predicts f (x) = y ∈ Y if

P(Y = y | x) ≥ P(Y = y ′ | x)

for all y ′ ∈ Y \ {y} (one takes the maximally probable
hypothesis).

I Thus, in the derivation of the naive Bayes’ classifier we
introduce a random variable Y that takes values in Y.

Towards the Naive Bayes Classifier

I We also make the (very common) assumption that every
element of X is given by values e1, . . . , en of features
E1, . . . ,En. We model those as random variables as well.
Thus P(Y = y | x) stands for

P(Y = y | E1 = e1, . . . ,En = en)

I Our training data then takes the form:

(e11 , . . . , e
1
n , y1), . . . , (em1 , . . . , emn , ym)

Example: Playing Tennis

I We assume we know the weather on a particular day, and
want to predict whether Peter plays Tennis on that day.

I Also assume we have collected data on the weather on days
on which Peters plays or does not play Tennis.

I The features used when collecting weather data are
I the feature outlook with values: sunny, overcast, rain;
I the feature temp with values: hot, mild, cool;
I the feature humidity with values: high, normal;
I the feature wind with values: weak, strong;

Example: Training data

Day outlook temp humidity wind play

D1 sunny hot high weak No
D2 sunny hot high strong No
D3 overcast hot high weak Yes
D4 rain mild high weak Yes
D5 rain cool normal weak Yes
D6 rain cool normal strong No
D7 overcast cool normal strong Yes
D8 sunny mild high weak No
D9 sunny cool normal weak Yes
D10 rain mild normal weak Yes
D11 sunny mild normal strong Yes
D12 overcast mild high strong Yes
D13 overcast hot normal weak Yes
D14 sunny mild high strong No

Example: Prediction

Assume we want to predict whether Peter plays Tennnis on a day
on which

I outlook=sunny;

I temp=cool;

I humidity=high;

I wind=strong.

In what follows we write

P(sunny | Yes)

for
P(outlook = sunny | PlaysTennis = Yes)

and so on for the remaining random variables and probabilities.

Example: Estimating probabilities

We would like to estimate:

P(Y = y | E1 = e1, . . . ,En = en)

which in the example is

P(Yes | sunny, cool, high, strong)

But how can we do this directly if in the training data there is no
entry for a day on which the outlook is sunny, the temperature is
cool, the humidity is high, and the wind is strong?

Towards the Naive Bayes Classifier

By Bayes’ Theorem

P(Y = y | E1 = e1, . . . ,En = en) =
P(E1 = e1, . . . ,En = en | Y = y)P(Y = y)

P(E1 = e1, . . . ,En = en)

As we only want to compare probabilities, it is sufficient to estimate

P(E1 = e1, . . . ,En = en | Y = y)P(Y = y)

for all y ∈ Y.

Example: Estimating probabilities

Thus, we want to estimate:

P(sunny, cool, high, strong | Yes)P(Yes)

and
P(sunny, cool, high, strong | No)P(No)

We can estimate P(Yes) by dividing the number of days on which
Peter plays tennis by the total number of days; and we can
estimate P(No) by dividing the number of days on which Peter
does not play tennis by the total number of days.

But as there are no entries for days on which the outlook is sunny,
the temperature is cool, the humidity is high, and the wind is
strong, how can we estimate P(sunny, cool, high, strong | Yes)?

Example: Assume conditional independence

Then we can “estimate”

P(sunny, cool, high, strong | Yes)P(Yes)

by

P(sunny|Yes)P(cool | Yes)P(high | Yes)P(strong | Yes)P(Yes)

and
P(sunny, cool, high, strong | No)P(No)

by

P(sunny|No)P(cool | No)P(high | No)P(strong | No)P(No)

Probabilities such as P(sunny|Yes) can be estimated by dividing
the number of days on which Peter plays tennis and on which it is
sunny by the total number of days on which Peter plays tennis.

Example: Prediction

Using the training data we estimate:

VYes = P(Yes)P(sunny | Yes)P(cool | Yes)P(high | Yes)P(strong | Yes)

and

VNo = P(No)P(sunny | No)P(cool | No)P(high | No)P(strong | No)

Example: Prediction

We estimate, for example,

I P(Yes) = 9
14 ;

I P(No) = 5
14

I P(strong | Yes) = 3
9 .

and obtain:
VYes = 0.0053, VNo = 0.0274

Thus, the naive Bayes’ classifier predicts that Peter will not play
tennis.

Naive Bayes Classifier
Suppose we want to predict the class of the instance with features
(e1, . . . , en).
We assume E1, . . . ,En are independent given Y and estimate

Vy = P(Y = y)
n∏

i=1

P(Ei = ei | Y = y)

for all y ∈ Y as follows:
I P(Y = y) is estimated by the number of instances labelled

with y in the training data divided by the number of all
instances in the training data;

I P(Ei = ei | Y = y) is estimated by the number of instances
with feature ei labelled as y in the training data divided by the
number of all instances labelled with y in the training data.

We then set
f (e1, . . . , en) = y

for the y for which Vy is maximal (take the maximally probable
hypothesis).

Example: Spam filter

I One wants to learn a classifier

f : {emails} → {spam, not spam}

Thus, in this case

X = { emails }, Y = {spam, not spam}

I We have training data:

(email1, spam), (email2, not spam), . . .

Representation of emails

I We represent every email x by the words from the English
dictionary that occur in it. Assume the English dictionary has
50.000 words and take an enumeration of these words. Then
we introduce random variables E1, . . . ,E50.000 which take
values in {0, 1}, where

I (Ei = 1) says that word number i occurs in the email.
I (Ei = 0) says that word number i does not occur in the email.

I The email x we want to classify is then given by the sequence

e1 · · · e50000 ∈ {0, 1}50.000

stating which words occur in x .

Classification
I To estimate

VYes = P(Spam = 1)
50000∏
i=1

P(Ei = ei | Spam = 1)

and

VNo = P(Spam = 0)
50000∏
i=1

P(Ei = ei | Spam = 0)

I estimate P(Spam = 1) by the number of spam emails divided
by the total number of emails in the training data.

I estimate P(Ei = 1 | Spam = 1) by the number of spam emails
containing word number i divided by the number of all spam
emails in the training data.

I estimate P(Ei = 0 | Spam = 0) by the number of non spam
emails not containing word number i divided by the number of
non-spam emails in the training data, and so on.

I Classify the email as spam if VYes ≥ VNo.

Summary: Naive Bayes Classifier

I A supervised learning algorithms based on Bayes Theorem;

I It is called “naive” because it is assumed that the features are
independent of each other, given the classification;

I Naive Bayes classifier works surprizingly well in practice even
if the features are obviously not independent given the
classification.

Similarity

I Assume that we can measure the similarity between items in
the training data X .

I For example,
I one could measure how similar two emails are by counting the

number of words from the English dictionary they both contain
and compare it to the number of words only one email
contains.

I similarity also plays a role when recognizing hand-written digits
(1 is rather similar to 7 which makes them harder to
distinguish than, say, 1 and 8). A possible measure for 28× 28

pixel images a and b is given by
√∑

1≤i,j≤28(aij − bij)2.

I to classify a new data item x , a similarity-based classifier
considers the classification of the items most similar to x in
the training data X and classifies x accordingly.

Distance Measures

We measure similarity between data items using a distance
measure d which assigns to data items x , x ′ a non-negative number

d(x , x ′) ∈ R.

d(x , x ′) is called the distance between x and x ′.

One typically requires that d satisfies the following equations for
metric spaces:

I d(x , y) = 0 if and only if x = y (identity of indiscernibles);

I d(x , y) = d(y , x) (symmetry);

I d(x , y) + d(y , z) ≥ d(x , z) (triangle inequality).

Distances for data items with numerical features
Numerous distance measures have been introduced. Of particular
importance is the Euclidean distance which gives, in the two and
three dimensional case, the length of the straight line between
points:

I The Euclidean Distance

d((e1, . . . , en), (f1, . . . , fn))

between (e1, . . . , en) and (f1, . . . , fn) is√√√√ n∑
i=1

(ei − fi)2

I for n = 1, d(e, f) =
√

(e − f)2 = |e − f |.
I for n = 2,

d((e1, f1), (e2, f2)) =
√

(e1 − f1)2 + (e2 − f2)2

Distances for data with non-numerical features

Consider qualitative data such as:

Day outlook temp humidity wind play

D1 sunny hot high weak No
D2 sunny hot high strong No
D3 overcast hot high weak Yes
D4 rain mild high weak Yes

What should the distance between D1 and D2 (as far as the
weather is concerned) be?

A natural distance measure in this case is the matching distance
between values of features: the number of features on which Di
and Dj do no coincide. Then

I d(D1,D2) = 1

I d(D1,D4) = 2

Nearest Neighbor Classifier

Assume the data in X come with a distance measure d(x , x ′) ∈ R
which states how similar x , x ′ ∈ X are. Then the nearest neighbor
classifier works as follows:

Given training data

(x1, L(x1)), . . . , (xn, L(xn))

for a new x ∈ X to be classified, let xi be the element of the
training set that is nearest to x :

d(x , xi) ≤ d(x , xj), for all xj 6= xi .

Then define the value f (x) of the classifier f by setting

f (x) = L(xi).

Nearest Neighbor Classifier: pseudocode

1: Input: training data (x0, L(x0)), . . . , (xn, L(xn))
2: new x ∈ X to be classified
3:

4: for i = 0 to n do
5: Compute distance d(x , xi)
6: endfor
7: return L(xi) such that d(x , xi) is minimal

Nearest Neighbor Classifier

A nearest neighbor classifier partitions X into regions. Boundaries
are equal distance from training points.

Nearest Neighbor Classifier

Thus, we obtain the following classifier for the classes “blue circle”
and “red triangle”:

The Nearest Neighbor Classifier can be problematic

I The Nearest Neighbor Classifier is very close to training data.

I It does not generalize the training data: if the training data is
noisy, then the classifier is noisy as well.

I For example, if a spam email is erroneously labelled as
non-spam, then all similar emails will also be classified as
non-spam.

k-Nearest Neighbor Classifier

I For x to be classified find k nearest xi1 , . . . , xik in the training
data.

I Classify x according to the majority vote of their class labels.

For k = 3:

k-Nearest Neighbor Classifier

1: Input: training data (x0, L(x0)), . . . , (xn, L(xn))
2: new x ∈ X to be classified
3:

4: for i = 0 to n do
5: Compute distance d(x , xi)
6: endfor
7: Let xi1 , . . . , xik be the list of items such that
8: d(x , xij) is among the k smallest distances
9: return label L which occurs most frequently in

L(xi1), . . . , L(xik) (majority vote)

Learning a “good” k

To learn a “good” k divide labelled data into training data T and
validation data V .

Training data Validation data

Learning a “good” k

The classification error of a classifier f on a set of data items is the
number of incorrectly classified data items divided by the total
number of data items.

Let

I f1 be the 1-nearest neighbor classifier obtained from the
training data T ;

I f2 be the 2-nearest neighbor classifier obtained from the
training data T ;

I and so on for 3, . . . ,m.

Choose fk for which the classification error is minimal on the
validation data.

Generalization

I The aim of supervised learning is to do well on test data that
is not known during learning.

I Chosing the values for parameters (here k) that minimize the
classification error on the training data is not neceessarily the
best policy.

I We want the learning algorithm to model true regularities in
the data and ignore noise in the data.

Training and validation data: k = 1

Training data

error = 0.0

Validation data

error = 0.15

Training and validation data: k = 3

Training data

error = 0.0760

Validation data

error = 0.1340

Training and validation data: k = 7

Training data

error = 0.1320

Validation data

error = 0.1110

Training and validation data: k = 21

Training data

error = 0.1120

Validation data

error = 0.0920

Properties and training

As k increases:

I Classification boundary becomes smoother (possibly reflecting
regularity in the data)

I Error on training data can increase.

Summary

Advantages:

I k-nearest neighbor is simple but effective

I Decision surfaces can be non-linear

I Only a single parameter, k , easily learned by cross validation.

Disadvantages:

I What does nearest mean? Need to specify a distance measure.

I Computational cost: must store and search through the entire
training set at test time.

Note: Netflix progress prize winner was essentially nearest
neighbor.

