COMP108-02-Pseudo-Code-02

COMP108 Data Structures and Algorithms

Pseudo code (Part II)

Professor Prudence Wong

pwong@liverpool.ac.uk

2020-21

- Suppose x & y are both integers.
- Write a while loop to output all factors of x which are not factors of y.

х	У	factors of x	output
6	3	<i>¥</i> , 2, 3 , 6	2,6
30	9	X, 2, X, 5, 6, 10, 15, 30	2, 5, 6, 10, 15, 30
3	6	Y, 3	-

- Suppose x & y are both integers.
- Write a while loop to output all factors of x which are not factors of y.

х	У	factors of x	output
6	3	1, 2, 3, 6	2,6
30	9	1, 2, 3, 5, 6, 10, 15, 30	2, 5, 6, 10, 15, 30
3	6	1,3	-

- Suppose x & y are both integers.
- Write a while loop to output all factors of x which are not factors of y.

х	У	factors of x	output
6	3	1, 2, 3, 6	2,6
30	9	1, 2, 3, 5, 6, 10, 15, 30	2, 5, 6, 10, 15, 30
3	6	1,3	-

- Suppose x & y are both integers.
- Write a while loop to output all factors of x which are not factors of y.

х	У	factors of x	output
6	3	1, 2, 3, 6	2,6
30	9	1, 2, 3, 5, 6, 10, 15, 30	2, 5, 6, 10, 15, 30
3	6	1,3	-

i \leftarrow ? while ???? do begin	
i $\leftarrow ??$ end	

- Suppose x & y are both integers.
- Write a while loop to output all factors of x which are not factors of y.

х	У	factors of x	output
6	3	1, 2, 3, 6	2,6
30	9	1, 2, 3, 5, 6, 10, 15, 30	2, 5, 6, 10, 15, 30
3	6	1,3	-

i ← ?	
while ???? do	
begin	
if ??? then	
output ???	
i ← ??	
end	

Steps:

If y is not divisible by i, then i is not a factor of y

Steps:

Factor of x must be between 1 and	х
$i \leftarrow 1$	
begin	
i ← i+1	
end	

If x is divisible by i, then i is a factor of x

If y is not divisible by i, then i is not a factor of y

Steps:

Factor of x must be between 1 and	х
$i \leftarrow 1$	
while i \leq x do	
begin	
i ← i+1	
end	

If x is divisible by i, then i is a factor of x

If y is not divisible by i, then i is not a factor of y

Steps:

Factor of x must be between 1 and	x
$i \leftarrow 1$	
while i \leq x do	
begin	
i ← i+1	
end	

If x is divisible by i, then i is a factor of x

if x%i == 0 then

If y is not divisible by i, then i is not a factor of y

Steps:

Factor of x must be between 1 and 2	х
(i ← 1	
while i \leq x do	
begin	
i ← i+1	
end	

If x is divisible by i, then i is a factor of x

if x%i == 0 then

If y is not divisible by i, then i is not a factor of y if y%i \neq 0 then

Steps:

Factor of x must be between 1 and	х
$(i \leftarrow 1)$	
while i \leq x do	
begin	
i ← i+1	
end	

If x is divisible by i, then i is a factor of x

if x%i == 0 then

If y is not divisible by i, then i is not a factor of y if y%i \neq 0 then

We need both conditions to hold and then we output i

```
if x%i == 0 AND y%i \neq 0 then
```

output i

Summarizing:

Summarizing:

i \leftarrow 1 while i \leq x do begin i \leftarrow i+1 end

Summarizing:

 $\begin{array}{l} i \leftarrow 1 \\ \text{while i} \leq x \text{ do} \\ \text{begin} \\ \text{ if } x\%\text{i} == 0 \text{ AND } y\%\text{i} \neq 0 \text{ then} \\ \quad \text{ output i} \\ \text{ i} \leftarrow \text{i+1} \\ \text{end} \end{array}$

Suppose x < y & both are integers.

Write a while loop to output the lowest common multiple Icm of x and y, i.e., the smallest number that is divisible by x and divisible by y.

Suppose x < y & both are integers.

Write a while loop to output the lowest common multiple Icm of x and y, i.e., the smallest number that is divisible by x and divisible by y.

- So we want
 - Icm%x to be 0
 - Icm%y to be 0
 - Icm to be as small as possible

Suppose x < y & both are integers.

Write a while loop to output the lowest common multiple lcm of x and y, i.e., the smallest number that is divisible by x and divisible by y.

- So we want
 - Icm%x to be 0
 - Icm%y to be 0
 - Icm to be as small as possible

Icm cannot be smaller than y and would not be larger than x*y.

> start from y +1,+1,+1 > until # x * A

Suppose x < y & both are integers.

Write a while loop to output the lowest common multiple lcm of x and y, i.e., the smallest number that is divisible by x and divisible by y.

- So we want
 - Icm%x to be 0
 - Icm%y to be 0
 - Icm to be as small as possible
- Icm cannot be smaller than y and would not be larger than x*y.
 - we can start lcm from y, increase by 1 every time, and then check if lcm is multiple of both x and y

Suppose x < y & both are integers.

Write a while loop to output the lowest common multiple lcm of x and y, i.e., the smallest number that is divisible by x and divisible by y.

- So we want
 - Icm%x to be 0
 - Icm%y to be 0
 - Icm to be as small as possible
- Icm cannot be smaller than y and would not be larger than x*y.
 - we can start lcm from y, increase by 1 every time, and then check if lcm is multiple of both x and y
 - we can start Icm from y, increase by y every time, and then check if Icm is multiple of x (we don't need to check if Icm is multiple of y because it is already)

Ian ity, ty, ty

Suppose x < y & both are integers.

Write a while loop to output the lowest common multiple lcm of x and y, i.e., the smallest number that is divisible by x and divisible by y.

- So we want
 - Icm%x to be 0
 - Icm%y to be 0
 - Icm to be as small as possible
- Icm cannot be smaller than y and would not be larger than x*y.
 - we can start lcm from y, increase by 1 every time, and then check if lcm is multiple of both x and y
 - we can start Icm from y, increase by y every time, and then check if Icm is multiple of x (we don't need to check if Icm is multiple of y because it is already)
 - once we find the smallest one, we should stop

$\int lcm \leftarrow , found \leftarrow false$	
while lcm \leq AND found \neq true	do
begin	$\overline{}$
if the	n
found \leftarrow true	
else lcm ← lcm +	
end	
output Icm	
$\boxed{Icm \leftarrow}$, found \leftarrow false	
while $lcm \leq AND$ found \neq true	do
begin	
if then	
found \leftarrow true	
else lcm \leftarrow lcm +	
end	
	1

 $lcm \leftarrow y$, found \leftarrow false while lcm $\leq x^*y$ AND found \neq true do begin if then found \leftarrow true else lcm \leftarrow lcm + 1 end output Icm $\mathsf{lcm} \gets \qquad \text{, found} \gets \mathsf{false}$ while Icm \leq AND found \neq true do beain if then found \leftarrow true else lcm \leftarrow lcm + ____ end output Icm

cm % x == 0 Icm is multiple of ac Icm is multiple of y 1 cm % η == π

```
lcm \leftarrow y , found \leftarrow false
while lcm \leq x^*y AND found \neq true do
begin
     if Icm%x==0 AND Icm%y==0 then
         found \leftarrow true
     else lcm \leftarrow lcm + 1
end
output Icm
lcm \leftarrow , found \leftarrow false
while lcm \leq AND found \neq true do
beain
     if
        then
          found \leftarrow true
     \mathsf{else}\;\mathsf{lcm} \gets \mathsf{lcm} + \_\_\_
end
output Icm
```



```
lcm \leftarrow y , found \leftarrow false
while lcm \leq x^*y AND found \neq true do
begin
     if Icm%x==0 AND Icm%y==0 then
         found \leftarrow true
     else lcm \leftarrow lcm + 1
end
output Icm
lcm \leftarrow y , found \leftarrow false
while lcm \leq x*y AND found \neq true do
beain
     if Icm%x==0 then
          found \leftarrow true
     else lcm \leftarrow lcm + y
end
output Icm
```

```
\mathsf{lcm} \leftarrow \mathsf{y} , found \leftarrow false
while Icm \leq x^*y AND found \neq true do
begin
     if
        Icm%x==0 AND Icm%y==0 then
          found \leftarrow true
     else lcm \leftarrow lcm + 1
end
output Icm
lcm \leftarrow y , found \leftarrow false
while lcm \leq x*y AND found \neq true do
beain
        lcm%x==0 then
     if
          found \leftarrow true
     else lcm \leftarrow lcm + y
end
output Icm
```

Questions

hot a good practice

- ► Is the condition ``Icm ≤ x*y'' necessary? Not necessary
- Why do we need to use the flag variable found?
- What happens if we remove the keyword ``else''? Approach 1 = Incorrect and Wey

6/9

Summary: Developing pseudo code

Next: Exercises on pseudo code

For note taking

COMP108-02-Pseudo-Code-02