
CHAPTER 10

Ethical Interest in Free and Open
Source Software

FRANCES S. GRODZINSKY and MARTY J. WOLF

10.1 INTRODUCTION

Free Software (FS), a concept developed byRichard Stallman in the 1980s, has served
as a foundation for important and related movements that have become possible
because of the Internet. The most important of these has been the Open Source
Software (OSS) movement. OSS, a concept rooted in software methodology and
analyzed by Eric Raymond, broke from the FS ethos in 1998. This paper will compare
FS and OSS, examining their histories, their philosophies, and development. It will
also explore important issues that affect the ethical interests of all who use and are
subject to the influences of software, regardless of whether that software is FS orOSS.
Wewill argue that the distinctionbetweenFSandOSS is a philosophically and socially
important distinction.Tomake this pointwewill review thehistoryofFSandOSSwith
a particular emphasis on four main people: Richard Stallman, Linus Torvalds, Eric
Raymond, and Bruce Perens. In addition, we will review the differences between
GNU1 General Public License (GPL) version 2 (v2) and the current draft of the GPL
version 3 (v3), and the related controversy in the OSS community. The GPL is the
primary mechanism used by the software community to establish and identify
software as free software. In section 10.3, we will examine the motivation and
economics of OSS developers. We will review issues of quality with respect
to OSS, autonomy of OSS software developers, and their unusual professional
responsibilities. The final important issue we address is consideration of OSS as a
public good.

The Handbook of Information and Computer Ethics, Edited by Kenneth Einar Himma
and Herman T. Tavani
Copyright � 2008 John Wiley & Sons, Inc.

1GNU is a recursive acronym for GNU�s not Unix.

245

10.2 ON THE DISTINCTION BETWEEN FS AND OSS

10.2.1 The History of Free and Open Source Software

Free software stems from the close ties that early software developers had with
academia. As the software industry began to mature, the bond with academia and its
ideals of sharing research results weakened. After spending many years as an active
participant in the hacker culture, Richard Stallman grew frustrated as more and more
softwarewasnot free—not free in a financial sense, but free in away that allowed for its
inspection, running, and modification. Stallman took a stand and began the GNU
project in 1984. The goal of the project was to establish a software development
community dedicated to developing and promoting free software. He established the
Free Software Foundation (FSF) to support his plan to create an operating system
complete with all of the tools needed to edit, compile, and run software. This effort
resulted in a large collection of free software. As part of this work, he codified his
notion of free software in the GNUGeneral Public License. Stallman was (and still is)
vocal in articulating a moral argument for free software and developing free software
as a viable alternative to nonfree software. In the early 1990s, Linus Torvalds was
instrumental in further strengthening theviability of free softwarewhenhe licensedhis
Linux operating system kernel under the GPL. When this kernel was bundled with
GNU�s software tools, Stallman�s goal of a completely free operating system was
achieved.

Although there was an active and productive worldwide community surrounding
the GNU/Linux operating system, free software failed to gain much traction in the
corporate setting. Eric S. Raymondwas instrumental in demystifyingmany aspects of
free software in his essay “The cathedral and the bazaar.” This essay motivated
Netscape to considermaking their browser software free. However, business concerns
took hold, and they were unwilling to make the move completely. After consultation
withRaymondandothers,Netscape released the source code for their browser asOpen
Source Software. It was at this time that Raymond andBruce Perens founded theOpen
Source Initiative (OSI). They established a definition of open source software (The
Open Source Definition, 2006), distinguishing it from free software.Whereas the two
notions are closely related, free software is quite rigid in its definition. There are four
basic freedoms, including the freedom to modify and redistribute the software, that
cannot be impinged upon. Authors of OSS, however, can place certain restrictions on
modifications to and the distribution of themodified software. The history of both free
and open software is more fully developed in numerous places, including Grodzinsky
et al. (2003). In the next sections we explore deeper distinctions between the free
software and open-source software communities. These two communities, although
deeply intertwined and closely related, have distinct goals that clearly manifest
themselves in the discussion surrounding the release of a draft of the next version
(version 3) of the GPL.

10.2.1.1 Free Software Richard Stallman first articulated the ideals of the Free
Software movement in 1985 in The GNU Manifesto (Stallman, 1985). In it he

246 ETHICAL INTEREST IN FREE AND OPEN SOURCE SOFTWARE

articulates his motivations for starting the GNU2 project and lays the groundwork for
the GNU General Public License. In particular, he notes that “[e]veryone will be
permitted tomodify and redistributeGNU, but no distributorwill be allowed to restrict
its further redistribution” (Stallman, 1985). It is this notion that served as the
foundation for the definition of free software.3 He argues that all computer users
would benefit from the GNU project and the GPL because effort would not bewasted
redeveloping software; everyone would be able to make changes to suit his/her own
needs; educational institutionswould be able to use the software to help students learn
about software; and no onewould be burdenedwith the responsibility of decidingwho
owns which piece of software and exactly what one is allowed to do with it.

Stallman�s exact position on the ethics of free software is unclear. He articulates his
responsibility as a software developer in theManifesto: “thegolden rule requires that if
I likeaprogramImust share itwithother peoplewho like it” (Stallman, 1985). In a later
essay he extends that responsibility by arguing that “programmers have a duty towrite
free software” (Stallman, 1992). He also seems to articulate a view that selling
software is morally wrong. “Software sellers want to divide the users and conquer
them, making each user agree not to sharewith others” (Stallman, 1985). However, in
this early paper it is unclear whether he is considering all software or just
“infrastructure” software, for example, operating systems, networking software,
software development tools, because many of his arguments focus solely on GNU.
Later, though, he states his position more pointedly and goes even further, claiming
that “proprietary software developers” who obstruct the use of that software by users
“deserve a punishment rather than a reward” (Stallman, 1992).

In theManifesto, he alsodealswith someof the earlyobjections to free software.We
mention those with substantial ethical importance here. The first objection centers on
programmers being rewarded for their creativity. He makes a distinction between
deserving a reward and asking for a reward. He states that “[i]f anything deserves a
reward, it is social contribution,” and that “[t]here is nothing wrong with wanting pay
for work” (Stallman, 1985). However, he insists “themeans [of charging for software]
customary in the fieldof software todayarebasedondestruction” (Stallman, 1985).He
argues that by asking users to pay for software,4 certain people will not be allowed to
use the software, resulting in reduced benefit to humanity. “Extracting money from
users of a program by restricting their use of it is destructive because the restrictions
reduce the amount and theways that the programcan be used. This reduces the amount
ofwealth that humanity derives from theprogram” (Stallman, 1985). In a later essayhe
makes the assumption that “a user of software is no less important than an author or
even the author�s employer” (Stallman, 1992). He acknowledges that not everyone

2GNU is a piece of software designed to have the same functionality as Unix and be completely compatible
with Unix.
3Note that free refers to freedom, not price.
4Early in this movement, Stallman lacked clarity regarding free software. He often merged the notions of
“no cost” and “freedom.” Similarly, he seems to confuse the notions of softwarewith restrictive proprietary
licenses and charging for software.

ON THE DISTINCTION BETWEEN FS AND OSS 247

may agreewith him on this point.5 However, he argues that thosewho do are logically
required to agree with his conclusions.

A second objection to free software that Stallman deals with in theManifesto is that
a programmer has a right to control the results of his/her creative endeavor. Stallman
argues that by controlling one�s software, one exerts “control over other people�s lives;
and it is usually used to make their lives more difficult” (Stallman, 1985). When
Stallman talks about control here, he is talking about the fact that under proprietary
software licenses, users of software are typically restricted from making copies for
others and making modifications to the software to meet their own needs. A potential
software user, though, needs to weigh the difficulties faced without the software
against the difficulties faced when the software is used. Assuming the user purchases
the software with full knowledge of the terms and conditions, the user has not been
taken advantage of as Stallman suggests.

Stallman brings a social justice bent to this objection as well. “All intellectual
property rights are just licenses granted by society because it was thought . . . that
society as a wholewould benefit by granting them” (Stallman, 1985). Stallman seems
to be of the opinion that once you buy a piece of software, you should have rights to
control it, much like you would when you purchase a book. He notes that the notion of
copyright did not exist in ancient times; it was created in response to technological
developments (i.e., the printing press) and was used to prevent businesses from
exploiting authors. Society benefited from copyright because authors, knowing they
could control the mass production of their works, had sufficient incentive to produce
creativeworks. Stallman sees proprietary software developers taking advantage of the
copyright systembecause thepublic is unawareof the trade-offs itmade in establishing
the system. He makes the case that the general population has not examined why it
values intellectual property rights. “The idea of natural rights of authors was proposed
and decisively rejected when the US Constitution was drawn up. That�s why the
Constitution only permits a system of copyright and does not require one; that�s why it
says that copyright must be temporary. It also states that the purpose of copyright is to
promote progress—not to reward authors. Copyright does reward authors somewhat,
and publishers more” (Stallman, 1994). His point is that society has not thought
thoroughly about copyright for some time, and this issue is not being dealt with
honestly bycopyright holders. “Atexactly the timewhen the public�s interest is tokeep
part of the freedom to use it, the publishers are passing laws which make us give up
more freedom.You see copyrightwasnever intended tobe anabsolutemonopolyonall
theuses ofa copyrightwork. It covered someuses andnot others, but in recent times the
publishers have been pushing to extend it further and further” (Stallman, 2001).

5There are those who clearly disagree with Stallman. Himma denies that user interests necessarily win out
over creator interests.Heargues that content creators invest themostprecious resourcesof their lives, timeand
effort, in creating content, while the most important interests of users in such content is frequently, but not
always, that they merely want the content. Although the fact that someone wants something is of moral
significance,Himmaargues that, from the standpoint ofmorality, the content creator�s interest in her time and
effort (and hence in the content she creates) wins out over mere desires of others (Himma, 2006, 2008).

248 ETHICAL INTEREST IN FREE AND OPEN SOURCE SOFTWARE

Ultimately, Stallman sees the social value of an individual modifying and sharing a
program as more valuable to society than the author�s intellectual property rights.

By the time that version 2 of the GPL was introduced in 1991, Stallman was much
clearer in his pursuit of the four freedoms that are essential for free software (although
this definition did not appear until 1996):

(1) Freedom to run the program, for any purpose.

(2) Freedom to study how the program works, and adapt it to your needs.

(3) Freedom to redistribute copies so you can help your neighbor.

(4) Freedom to improve the program, and release your improvements to the
public, so that the whole community benefits.

In addition to the four freedoms,GPLv2 also introduced a notion called “copyleft.”
Copyleft is a play on the word “copyright,” but, more importantly, it leverages
copyright law to propagate the four software freedoms. In particular, it requires that
derivative works also be licensed under the GPL. Thus, once a piece of software is
made free by the GPL, it and all of its derivative works will always be free. Thus, the
GPL is themainmechanism for establishing andpropagating software freedom.Later,
wewill consider the viewpoint that copyleft is coercive because the legalweight of the
copyright system is used to force others to propogate free software.

With the clear articulation of the four freedoms (and amechanism to spread them),
Stallman was in a position to argue more clearly for free software. In Why Software
Should Be Free, he clearly explains the social cost of software having owners
(Stallman, 1992). He is careful to separate out the act of creating software from the
act of distributing software. He argues that once software is created, society is harmed
in threewayswhen software is not distributed freely: software is used by fewer people,
software users are unable to adapt or fix the software, and the software cannot be used
to learn from to create new software. He uses a utilitarian argument to suggest that
proprietary software is an unethical choice. The purchase of software is zero-sum—
wealth is transferred between two entities. “But each time someone chooses to forego
use of the program, this harms that person without benefiting anyone” (Stallman,
1992). He goes on to claim that the decision by some not to purchase software harms
society because those people do not derive the benefit of that software. Stallman�s
point is subtle here. Distributing software, unlike distributingmaterial goods, requires
no new raw materials or packaging and the incremental distribution costs to allow
widespread use are zero or very small.

Stallman also argues that the typical proprietary license damages social cohesion
because it restricts one neighbor from helping another. Such a license demands that a
person give up the right to copy the software in the event that a neighbor would benefit
from its use.Thedamage comesbecause people “know that theymust break the laws in
order to be good neighbors” (Stallman, 1992). He thinks that the software copyright
system reinforces the notion that wemust not be concerned with advancing the public
good. “[T]he greatest scarcity in the United States is not technical innovation, but
rather the willingness to work together for the public good” (Stallman, 1992).

ON THE DISTINCTION BETWEEN FS AND OSS 249

Arelated,weaker claimbyStallman is that proprietary programmers suffer harm in
knowing that everyone, quite possibly even themselves, cannot use the software in the
case that the owner is the author�s employer. Stallman has two additional arguments
regarding the social cost of keeping software proprietary. The first is a slippery slope
argument that proprietary software begins to destroy the ethic ofmaking contributions
to society. This argument is suspect. It is no secret that Bill Gates has made enormous
sums of money from proprietary software. The Bill and Melinda Gates Foundation is
evidence that theGates� ethic ofmaking contributions to the greater good is still intact.

Stallman also argues that there is a social cost of frustration and lost capital because
of proprietary software. Writing replacement software is frustrating for the program-
mer and more expensive than modifying and improving existing software (Stallman,
1992). This argument is weak, because there is social value in having two competing
piecesofsoftware thatare functionallyequivalent. It seemsthat theapparent robustness
and security of GNU/Linux has prompted Microsoft to take robustness and security
more seriously in the Windows operating system. Also, there are numerous software
categorieswhere therearecompetingFSpackages.Forexample,bothKDEandGnome
(both desktop software) have their ardent supporters. Each provides the same func-
tionality (at least on a high level) and allows users and other developers to choose
software that most appropriately meets their needs.

In a later essay, Why Software Should Not Have Owners, Stallman analyzes
arguments for software ownership (Stallman, 1994). He notes that “[a]uthors often
claim a special connection with programs they have written” (Stallman, 1994) and
because of that special connection, in ethical analyses, software authors� positions
should bear more weight. Proponents of this argument claim that this connection
comes from extending rights associated with material objects to software. Stallman
asserts thatmaterial objects are fundamentally different fromsoftware and that there is
no evidence that software is deserving of the same protection. The fundamental
difference stems from the scarcity of material objects relative to the (infinite)
abundance of software. As mentioned earlier, it is easy and cheap to make copies
of source code without depriving the holder of the source code access to the original
copy. Again appealing to an act utilitarian analysis he notes, “[W]hether you run or
change aprogramIwrote affects youdirectly andmeonly indirectly.Whether yougive
a copy to your friend affects you and your friend much more than it affects me”
(Stallman, 1994). Itmight be argued that the last statement is not true. The holder of the
original is deprived of the profit that would have been made through selling the
software, but this is largely an economic argument.

10.2.1.2 Open Source Software The free software community grew
substantially after the introduction of the Internet and Linus Torvalds� contribution
of Linux as free software. It quietly made gains, without garnering widespread
attention, until 1998, when Eric Raymond and Bruce Perens teamed to create the
Open Source Initiative. In 1997, Raymond gave the first thorough analysis of
the software development process employed by the free software community in
“The cathedral and the bazaar” (Raymond, 2001). He argued that the process is
effective at producing superior software and considers numerous reasons that make it

250 ETHICAL INTEREST IN FREE AND OPEN SOURCE SOFTWARE

effective (which we explore further in Section 10.3). It was at this time that many
suggested that most free software developers were either unaware of or motivated by
something other than the free software ethos promoted by Stallman. (See Bonaccorsi
andRossi, 2004 andHertel et al., 2003 for subsequent verification of this observation.)
In that same year, Perens published the Debian Social Contract to articulate the
developers� commitment to open source software and its users (Perens, 2002). One
thing that distinguishes the Debian Social Contract from the GPL is that the needs of
the users trump the priority of software freedom as defined by the GPL. Item 4 states,
“Wewill not object to non-freeworks that are intended to be used onDebian systems.”
It is clear that Raymond and Perens sought to shape free software into an acceptable
choice for businesses by defining open source software so that there are no restrictions
on distributing it with proprietary software.

The business case that Raymond and Perens firstmadewas toNetscape, attempting
to convince them tomake the source code for Netscape Navigator available to the free
software community and remove restrictive proprietary licensing terms. In the process
it became clear that the business issue was not so much making the source code
available to others, but losing control over derivative works. The GPL�s copyleft
prevented the business from ever “closing” the source code. Raymond, the pragmatist,
wasmotivated by purely practical terms (thewidespread distribution of source code is
an effective software development technique). Because software freedom was not of
particular interest to many free software developers and losing control over derivative
works was a risk that business was not willing to take, the requirement to spread
software freedom (the notion of copyleft) was weakened and the notion of “Open
Source Software” was developed. The Debian Social Contract, which contained the
Debian Free Software Guidelines, became the basis of the Open Source Definition.
The OSI now publishes licenses that meet the Open Source Definition and declares
software distributed under any of these licenses as “OSI Certified.”

Onphilosophicalgrounds,Stallman isamostardentcriticofOpenSourceSoftware.
Hehas twomainobjections. The first has to dowith theweakeningof the notionofFree
Software. While making the source code available with the executable version will
allow a user to achieve most of the four software freedoms, there are ways to license
software and the source code that will allow certain users to keep their modifications
private (in the sense of source code) while releasing only the executable version.
Stallmansees theability todothisasaviolationof the tenetsoffreesoftware.Putting the
needs of any particular user/developer ahead of the concept of software freedom is
unacceptable.He isalsounabashed inhisobjection to theuseof the term“opensource.”
He argues that obscuring “free software” behind the “open source software”moniker
hides the ideals that free software promotes (Stallman, 1998). When people use open
source software for pragmatic reasons, there is no reason to believe that they truly
understand the ethical importance of free software. Stallman believes that peoplewho
use free software and understand the social implications attached to its use and
development aremuchmore likely to include the social implications in their delibera-
tions surrounding a switch to proprietary software. As evidence, he recounts a number
of incidenceswhere executives in the open source industry publicly indicated a lack of
appreciation of the ideal of free software. He attributes this unawareness to the use

ON THE DISTINCTION BETWEEN FS AND OSS 251

of the term “open source” rather than the use of the term “free.”We do note, however,
that Stallman does not object to most of the practices of the Open Source Software
community.Thefact that thesourcecodeonanopensourceproject isavailable toall is a
necessary, but not sufficient, part of software freedom.

Chopra and Dexter also offer analysis of the distinction between FS and OSS
(Chopra and Dexter, 2005). They start by noting that software now plays an essential
role in the social and political lives of many people and ask the question of whether
(open source) software developers are morally obligated to apply copyleft to their
work.After taking “as abedrockprinciple that freedom is amoral good”and “[t]hat the
only justifiable violation of this freedom is the restraint of a person whose actions
interfere with the liberty of another,” they conclude that FS is the morally superior
choice to OSS. Their argument centers around four points. First, they note that the
restrictionsof copyleft only affect the act of distribution.That is,most freedomsarenot
affected by copyleft. Next they observe that copyleft does not restrict the ability of the
licensee to earn a living, because someone can still be hired to make modifications to
copyleft code. Although it is certainly the case that software authors can still make a
living developing software, it is not the case that copyleft does not impinge on the
methods that they can use to do so. The requirements of copyleft demand that source
code be made available, all but ensuring that the author cannot make a living off the
distribution of copylefted code. Chopra and Dexter go on to argue that there is no
coercion in copyleft.6 They state that all choices by the original developer and
subsequent modifiers of the source code are made with full knowledge of the terms
of the license, and, thus, all involved support the notion of free software and perpetuate
that notion. Numerous studies of free software developers seem to indicate the
contrary (Bonaccorsi andRossi, 2004;Hertel et al., 2003).Most developers participate
for reasons other than promoting free software. It is not unreasonable to conclude that
some of them grudgingly contribute to free software. A contributor may be in a
position of not wanting to give up distribution rights (as is required by copyleft), yet
wanting to make the source code available. Such a contributor must choose one or the
other, but not both. Finally, Chopra and Dexter state that OSS developers take the
position that developing software is “just engineering” and “free software is not a
social or moral imperative.” They seem to discount the fact that there may be times
when free software may not be worth anything to society. This may be best
demonstrated by the fact that FS was largely unknown until the start of the OSS
movement. Without the OSSmovement, free software might not havemoved into the
mainstream and business would not have considered it as a viable alternative to
proprietary software. By introducing the notion ofOSS, the FS community is now in a
position to have its ideals considered by a wider audience.

10.2.2 Critiques of Free and Open Source Software

One of the sharpest ethical attacks on free software came from BertrandMeyer. In the
essay “The ethics of free software,”Meyer lumps both free software and open source

6We include Watson�s critique of this point in the next section.

252 ETHICAL INTEREST IN FREE AND OPEN SOURCE SOFTWARE

software into the samecategory (Meyer, 2001).Unfortunately, his analysis beginswith
some assumptions that are inconsistent with those of Stallman and Raymond. In
particular, he assumes that software is the legitimate property of someone and that
“free software” is defined in terms of being no-cost, unrestricted in its use, and freely
available in terms of the source code. These assumptions make his analysis more
indirect. Nonetheless, he has a number of points that require consideration. The first is
his assumption that software is the legitimate property of someone. Stallman rejects
this notion by arguing that the analogy between real property rights and intellectual
creations is weak: “Our ideas and intuitions about property for material objects are
about whether it is right to take an object away from someone else. They don�t directly
apply tomaking a copy of something” (Stallman, 1992). Yet Meyer believes we must
consider the software developers who have “contribute[d] their time, energy and
creativity to free software” (Meyer, 2001). Stallman does not object to the remunera-
tion of the developers. His objection is the restrictions placed on software users
because they do not have access to the source code. Meyer sees giving source code
away as “an immediate business killer” (Meyer, 2001).

Meyer�s second ethical critique stems from the fact that much free software is a
“copycat” of some proprietary piece of software. He points out that making software
that mimics proprietary software is not unethical, but failing to acknowledge the
original proprietary piece of software is an ethical lapse on the part of the developer.
Meyer states that “much of the hardwork and creativity goes into specifying a system”

and that the implementation is really not a place that brilliance is demonstrated.
Because, by necessity, the interface is publicly available, it serves as a basis for
competitors, both proprietary and free, to begin their work. Although such a lack of
attribution may be an ethical lapse, it is not one that speaks to the ethics of free
software, but to the ethics of the developer of a particular software package.

Brett Watson offers a critique of both free and open source software that takes an
interesting perspective. InPhilosophies of Free Software and Intellectual Property, he
claims that when “one takes the stance that copyright is evil,” leveraging copyright
to promote the ethical notion of freedom is in itself unethical (Watson, 1999). In
particular, Watson objects to the entire notion of copyleft. It becomes a burden,
impinging on the freedom of the developer. There should be no requirement of
quid pro quo; the fact that a developer is in a position to take advantage of the software
written byothers does notmean the samedevelopermust return his contributions to the
software development community. Watson calls copyleft a coercive system and on
those grounds objects to the notion of copyleft. In some sense, he tries to take the
argument to a different level. If one is truly concerned about freedom (rather than just
software freedom), then onemust not try to control the behavior of others. “Advocates
of a non-coercive systemmay themselves dislike being coerced, and by application of
�the golden rule� hence refrain from coercing others” (Watson, 1999).

Watson also considers the use of copyright to promote a noble cause, in this case
software freedom that is embodied by the GPL. He argues that there is no reason to
limit the promotion to this one noble cause and that we might expect to see other
licenses that promote additional noble causes. In fact, he suggests that the only logical
conclusions are licenses that include either none or all of an author�s noble causes.

ON THE DISTINCTION BETWEEN FS AND OSS 253

Watson does acknowledge the fact that for the GPL to be effective, authors must
choose to adopt it. The GPL is designed in such a way that it contains the least
restrictive set of clauses needed to promote software freedom. Anymore than that and
it becomes controversial (aswe shall see in the discussion surrounding version 3 of the
GPL), andmembers of the free software communitywill not adopt it for their software.

Perhaps Watson�s most insightful critique of free software is that in some sense
copyleft is not really about freedom, it is more about making sure that someone does
not earn money off someone else�s hard work—even though that person had
voluntarily and knowingly given the work away to others. (In some sense copyleft
is like preventing the purchaser of a Habitat for Humanity home from selling it at a
profit and keeping the money.) Watson points out that if someone takes a piece of
software, modifies it, and then tries to sell it without source code, the original piece of
software is still available for all to look at and use. The freedom of the original piece of
software is unaltered in this process. Stallman would counter that the software
modifier in this scenario has done society an injustice by not making the source code
for the modified software available. He does not have any qualms with putting legal
barriers inplace toprevent this sort ofantisocial behavior.Watson, on thecontrary, sees
copyleft as impinging on the autonomy of the software developer, thus reducing
freedom. He suggests a scenario in which a developer has no particular attachment to
the software and what becomes of it. “[I]t may be flattering to such an author that
someone elsewishes to create a derivedwork, regardless of whether that derivedwork
will be free or proprietary” (Watson, 1999).

Watson thinks the world would be a better place if there were no copyright
restrictions whatsoever. Without copyright, there is a chance that all software will
trulybe free—no restrictions at all.However,Watson is a realist in recognizing that this
ideal will never be achieved and acknowledging that copyleft is a pragmatic way to
maximize most freedoms.

10.2.3 The Controversy Regarding GPL Version 3

In 2006, the Free Software Foundation released drafts of version 3 of the GPL for
commentary by theworldwide free software community. In response to technological
and legal developments that have occurred since the adoption of GPLv2, GPLv3
articulates the notion of software freedom in a much more nuanced way. One of the
more controversial aspects has been the language that deals with the issue of Digital
RestrictionsManagement. The preamble of the first draft of GPLv3 clearly stated that
“Digital Restrictions Management is fundamentally incompatible with the GPL” and
that it “ensures that the software it covers will neither be subject to, nor subject other
works to, digital restrictions fromwhich escape is forbidden” (GPLv3,1st draft, 2006).

It is worth noting that most of the proprietary software industry uses the acronym
DRM to refer to “Digital Rights Management.” Digital rights management refers to
software that copyright holders use to manage creative content and to control the
copying of electronic versions of that material. The Free Software Foundation clearly
takes a different interpretation of the matter of whose rights are being interfered with
by such software. This really comes as no surprise because Stallman has been

254 ETHICAL INTEREST IN FREE AND OPEN SOURCE SOFTWARE

concerned about this issue for some time. In the essay entitled Linux, GNU, and
Freedom, he noted some troubling developments with respect to software freedom
within the Linux kernel (Stallman, 2002). He stated that the Linux kernel distributions
at that time contained nonfree software that probably made it illegal for them to be
distributed. This nonfree software came in two forms as part of device driver software.
There were special numbers that needed to be placed in the device registers by the
driver and a binary form of a substantial piece of software. To deal with this threat of
DRM, GPLv37 has a section entitled “No denying users� rights through technical
measures” with the following terms:

No covered work constitutes part of an effective technological “protection” measure
under section 1201 of Title 17 of the United States Code.8 When you convey a covered
work, you waive any legal power to forbid circumvention of technical measures that
include use of the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing the legal rights of third parties against
the work�s users.

There is another section that deals with theDRM threat by addressing the potential for
DRM present in hardware rather than software. The term deals with the requirements
for the distribution of source code when object code (the executable version) is the
primary distribution mechanism.

The Corresponding Source conveyed in accord with this section must be in a format that
is publicly documented, with an implementation available to the public in source code
form, and must require no special password or key for unpacking, reading or copying.

This part of GPLv3 would apply to software that a device (say, a cell phone)
manufacturer puts on the device. It would allow the user of the apparatus (or anyone,
for thatmatter) toobtain the source code even though itwasnot included in thepackage
with the device.

While the language is still fluid as we write this, GPLv3 contains clear language
regarding software users� freedoms and suggests pushing those freedoms to other
realms. Many within the OSS community are ambivalent about the promotion of
software freedom as expressed in GPLv2. However, many OSS developers are
concerned about using a software license to push freedom in other realms. Linus
Torvalds, the original developer of Linux and holder of the copyright to much of the
core of Linux, is quite straightforward about his objection: “The Linux kernel is under
the GPL version 2. Not anything else. . . .And quite frankly, I don�t see that changing”
(Torvalds, 2006a). He is particularly concerned about the first provision noted above.
In reference to it, he says, “I believe that a software license should cover the software it
licenses, not how it is used or abused—even if you happen to disagree with certain
types of abuse” (Torvalds, 2006b). In that same post hegoes on to suggest that there are

7All quotes from GPLv3 are taken from the second draft, the most current draft at the time of this writing.
8This is a reference to the Digital Millennium Copyright Act.

ON THE DISTINCTION BETWEEN FS AND OSS 255

some uses of DRM that might be for the greater good. Curiously, Torvalds has caught
Stallman in a contradiction—GPLv3 restricts the use of FS in DRM, yet Software
Freedom 0 demands the freedom to run a program for any purpose.

The FSF is very clear about the importance of the anti-DRM clauses in GPLv3.
EbenMoglen, director of the FSF, in a speech to FSFmembers said that the anti-DRM
clauses inGPLv3 are there because the FSF is “primarily fighting to protect ourway of
making software” (Moglen, 2006). Because DRM technologies are often used to
control access to content other than software (e.g., movies and music), there are those
that view the anti-DRMclauses as an attackon the content developer�s rights to control
the distribution of that content. Essentially, the content developer�s right to control his/
her creations is “collateral damage” that the FSF iswilling to accept in its promotion of
software freedom. This view is consistent with Stallman�s focus on the rights of all
users. In the same speechMoglen says, “What we are playing for is the same thing as
always: rights of users.”He expresses grave concern about giving up control of many
aspects of our personal lives to DRM technology as more and more of the functions
within our homes are based on computing technology.

In addition to the controversy surrounding the anti-DRM terms in GPLv3, GPLv3
has raised a practical issue with ethical consequences. In addition to offering GPLv2
for others to use, the FSF offers boilerplate language to use when software is licensed
underGPLv2. This language allows a redistributor ofGPL�d software to license itwith
either version 2 or any later version of the GPL. A number of years ago (there is some
controversy about exactly when and for which files), Torvalds and other major kernel
developers began removing the “or later” clause from the software they wrote.
Torvalds has said, “Conversion isn�t going to happen” in reference to a possible
conversion from GPLv2 to GPLv3 (Torvalds, 2006a). This is a clear demonstration
that Torvalds� conviction to software freedom is more pragmatic than that of
Stallman�s, yet his strong belief in GPLv2 suggests that it is not as pragmatic as
Raymond�s and Perens�.

10.3 WHY OSS FLOURISHES

The social contract articulated in the Open Source Software Definition is fairly clear
about what OSS offers to others. But what do OSS developers expect in return? What
motivates developers to contribute to an open source project? Is it altruism, that is, do
they consider it a “pro bono” project that contributes to the public good? Is it a reaction
against corporate greed? Does it make them feel part of a select community with
special talents? Clearly all of these play a part inOSSdevelopermotivation to abide by
this contract. Beyond that, however, there is also a sense that developers see their
involvement as “enlightened self-interest” (Kollock, 1999).

The analysis of motivations of OSS developers can best be traced through the
writings of Eric S. Raymond and Bruce Perens, cofounders of the OSI initiative. The
OSI initiative was developed in 1998 and attained general public notice through the
publication of Eric Raymond�s “The cathedral and the bazaar” (1998, revised 2001),
Homesteading the Noosphere (2000), and The Magic Cauldron (1999, revised 2002).

256 ETHICAL INTEREST IN FREE AND OPEN SOURCE SOFTWARE

The impetus for Raymond�s initial publication was the emergence of Linux, Linus
Torvalds� bazaar-like operating system project. In “The cathedral and the bazaar,”
Raymond, skeptical that Torvalds� method would work on other large open-source
projects, applied it to a project of his own. The results are detailed in the article. The
next twoarticles are further attempts to identify themotivations ofOSSdevelopers and
theeconomicsassociatedwith theOSScommunity.Perens inTheEmergingEconomic
Paradigm of Open Source (revised 2006) updates the economic analysis started by
Raymond in TheMagic Cauldron.Yochai Benklar in “Coase�s Penguin, or, Linux and
the Nature of the Firm” is interested in the more general question of “large-scale
collaborations in the digital information market that sustain themselves without
reliance on traditional managerial hierarchies or markets” (Benklar, 2002).

All of these articles attempt to explain the customs and taboos of the OSS
community as well as the sustainability of open source in an exchange market.
Although theremaybeallusions to issues ofmoral obligation, that is,whether software
developers have an obligation to make their source code available, in the explanation
of customs and taboos, Raymond declares that he is presenting an economic-utility
argument rather than a moral analysis. While Raymond and Perens take the approach
of examining software production within the OSS community, Benklar observes the
phenomena as a nonpractitioner and extends his observations to other domains.

10.3.1 The Motivations of OSS Developers

In “The cathedral and the bazaar” (1998), Raymond details how the success of GNU/
Linux had changed his perception of what the open source community could
accomplish.

The fact that this bazaar style seemed to work, and work well, came as a distinct shock.
As I learned my way around, I worked hard not just at individual projects, but also at
trying to understand why the Linux world not only didn�t fly apart in confusion but
seemed to go from strength to strength at a speed barely imaginable to cathedral-builders.

Previously,Raymondenvisaged largeoperating systemsas beingdevelopedonly in
the cathedral style of traditional software development. Open source projects, to him,
were small and fast, built on rapid prototypes. He decided to test the Linux method of
development for himself by developing a POP client for e-mail. He was searching for
themotivations that drew hackers into large projects aswell as the sustainability of the
projects.

UsingTorvalds�model of “release early and often,”Raymond discovered that there
were several features that drew hackers to his project and why this seemingly chaotic
model worked. The essay is organized around the lessons learned from the Torvalds
model: Primarily, programmers join a community because there is a program that they
need for their own personal use and they arewilling to put it out to theOSS community
at large. “When you start community building, what you need to be able to present is a
plausible promise. Your program doesn�t have to work particularly well. It can be
crude, buggy, incomplete, and poorly documented. What it must not fail to do is

WHY OSS FLOURISHES 257

convince potential co-developers that it can be evolved into something really neat in
the foreseeable future” (Raymond, 2001).

Raymond observes that programmers who participate in this bazaar style of
development know the value of reusable code; can start over and throw away the
first solution; can keep an open mind and find interesting projects that they want to
code; treat users as codevelopers and listen to them; keep the beta test base large so that
problems will find a solution; use smart data structures; and can ask a different
question, or try a different approach when a wall is hit (Raymond, 2001). These
lessons, verified in his own project, confirm Torvalds� methodology. The initial
publication of this essay in 1997 drew criticisms that Raymond answered in the
2001 revision.Most traditionalists objected to the dynamic change of project groups in
the bazaar style of development. They equated it to a lack of sustainability in the
project. Raymond answered these objections by citing the development of Emacs, a
GNUediting tool that sustained a unified architectural visionover 15years (Raymond,
2001).

Ultimately, Raymond concludes that “perhaps in the end the open-source culture
will triumphnot because cooperation ismorally right or software �hoarding� ismorally
wrong (assuming you believe the latter, which neither Linus nor I do), but simply
because the commercialworld cannotwin an evolutionary arms racewith open-source
communities that can put orders of magnitude more skilled time into a problem”

(Raymond, 2001). Raymond emphasizes that one of the strengths of the OSS
community is that programmers select projects based on interest and skills. He refines
this argument in Homesteading the Noosphere, where he contrasts the OSS commu-
nity, a gift culture that is marked by what you give away in terms of time, energy and
creativity, with that of an exchange culture that is built on control of the scarcity of
materials. In OSS there are always resources of machines and people, and those who
try to participate in this culture understand that they are obligated to share their source
code. He points out that the culture of OSS only “accepts themost talented 5% or so of
the programming population” (Raymond, 2000).

In this article, Raymond explains that although members of the OSS community
believe that open-source software is a good andworthy thing, the reasons for this belief
vary. He asserts that there are various subcultures within the OSS community: those
representing zealotry (OSS as an end in and of itself); those representing hostility to
any and all commercial software companies, and any cross product of these two
categories (Raymond, 2000). He cites Stallman as an example of a member of the
hacker culturewho is both “very zealous and very anticommercial” (Raymond, 2000).
And, by extension, the FSF supportsmany of his beliefs. He contrasts the FSFwith the
pragmatists whose attitudes are only mildly anticommercial and who, in the early
1980s and1990s,were representedby theBerkeleyUnixgroup. The real shift in power
within the hacker culture occurred with the advent of Linux in the early 1990s and the
release of the Netscape Source in 1998. When the corporate world took an interest in
OSS, thepragmatists became themajorityof thehacker culture.By themid-1990s, this
manifested itself in programmers who identified more with Torvalds than with
Stallman, and who were less zealous and hostile. The OSS community became more
polycentric, developing their own non-GPL licensing schemes.

258 ETHICAL INTEREST IN FREE AND OPEN SOURCE SOFTWARE

TheOSSdevelopmentmodel seems toverify that it is economical andproductive to
recruit volunteers from the Internet. In general, OSS developers fall into one of two
broad categories: hobbyists who enjoy writing software and those who work for a
corporation or agency that requires its developers to make contributions to either free
or open source software projects. Regardless, there are norms dealing with taboos and
ownership customs that act asmoral guidelineswithin theOSScommunity.The taboos
are against forking projects (breaking off and working on another version of the
project), distributing changes without the approval of the project owners, and
removing someone�s name from the credits of a project without prior permission.
Owners of OSS projects are likened to the homesteaders of the wild frontier. Home-
steaders are those who assume ownership of a project by cultivating the idea and
interesting the hacker community, by taking it over from another “owner”who passes
it to them, or by picking up a project with no clear chain of ownership and making it
their own (Raymond, 2000). In the last case, customdemands that youactively look for
the owner and announce that you intend to take over the project. Raymond observes
that hackers have been following these norms for years, and that they have evolved.
Even in the OSS community there has been movement to “encourage more public
accountability, more public notice, and more care about preserving the credits and
change histories of projects in ways that (among other things) establish the legitimacy
of the present owners” (Raymond, 2000).

In his Lockean analogy, Raymond suggests that the expected return from the
programmer�s labor comes in the form of reputation among others within the
community not only as an excellent programmer, but also as a keeper of the customs
associated with homesteading. The recognition of reputation can come only from
those already recognized within the culture, and criticism is always directed at the
project andnot at the person. “The reputation incentives continue tooperatewhether or
not a craftsman is aware of them; thus, ultimately, whether or not a hacker understands
his own behavior as part of the reputation game, his behavior will be shaped by that
game” (Raymond, 2000).While one could argue that reputationmight translate into an
economic benefit in a traditional market, what you give away leads to social status
within the OSS community. “In the hacker community, one�s work is one�s statement.
There�s a very strict meritocracy (the best craftsmanship wins) and there�s a strong
ethos that quality should (indeedmust) be left to speak for itself. The best brag is code
that �justworks,� and that anycompetent programmer can see is good stuff” (Raymond,
2001). Therefore, Raymond points out that “the reputation gamemay provide a social
context within which the joy of hacking can in fact become the individual�s primary
motive” (Raymond, 2000).

The noosphere in the essay title refers to “the territory of ideas, the space of all
possible thoughts” (Raymond, 2001). Raymond is clear to point out that the noosphere
is not cyberspace, where all virtual locations are “owned” by whoever owns the
machines or the media. He comments that there is anger against companies, such as
Microsoft, because these commercial companies restrict their source code to only their
programmers, thereby reducing the noosphere available for development by and for
everyone (Raymond, 2001). Within the OSS community itself, there are also certain
elements that are not forthcoming with their code, and, in fact, at times will mislead

WHY OSS FLOURISHES 259

otherOSS programmers. These are crackerswho do not seem to respect thevalues and
customs of the legitimate OSS community, nor feel morally obligated to participate in
the gift culture that OSS embraces. Their philosophy is to hoard rather than share, and
they clearly do not embrace the trust that is necessary in a peer review process. For
Raymond, sharing good craftsmanship that helps people rewards the developer with
personal satisfaction and extends the noosphere.

10.3.1.1 Autonomy One perceived attraction for OSS developers is the
autonomy of the programmer. Although developers who embrace OSS do gain a
measure of autonomy not available to those working on commercial software, the
claim for complete autonomy does not appear to be valid. For the most part, OSS
developers work as volunteers from the perspective of the project, and can join or quit
an effort strictly on their own initiative. These volunteers are not coerced into
participation and contribute willingly. Therefore, one might assume that the OSS
developer can be depicted as a libertarian ideal, unshackled by corporate controls.
However, there are several types of control inOSS, evenwhen no single developer is in
charge of an OSS project. An OSS developer cannot be sure that his/her contribution
will be accepted into the continuously evolving canonical version.A contributionmay
be embraced or rejected, and if accepted may later be changed or replaced. The
developer is free to contribute or not, but any single developer cannot claim ultimate
control over the use of his/her contribution. In Homesteading the Noosphere, Eric
Raymond states, “the open-source culture has an elaborate but largely unadmitted set
of ownership customs. These customs regulate those who can modify software, the
circumstances under which it can be modified, and (especially) who has the right to
redistribute modified versions back to the community” (Raymond, 2001).

The developers of an open source project must take special care to avoid the
symptomsof groupthink.Anewcomer to open sourcedevelopment brings very little in
terms of reputation when he/she proposes a new piece of code or a new tack on
development for a project. Project leaders who are less open to new ideas and ways of
doing thingsmaymiss the innovation of the newcomer�s idea.Not onlywill the project
lose the good idea, but it will also face the potential of losing a good developer. Thus,
open source project leaders and developers must show a great willingness to take in
new ideas, evaluate them thoughtfully, and respond constructively to nurture both the
idea and the developer of the idea.

Project leaders must exercise similar abilities when a subgroup comes with an idea
that is controversial. Care must be taken that the larger group does not ride roughshod
over the smaller group�s idea. Again, in addition to losing out on a good idea and
potentially driving people away from the project, doing so will discourage future
innovators from taking their ideas forward. Note that the proprietary software
development model is not subject to this argument. The innovative developer who
meets resistant project leaders or management is typically free to leave the organiza-
tion, and he/she regularly does. In fact there are social norms that actually encourage
this type of behavior; we call these people entrepreneurs.

So it appears that the autonomy experienced by an open source developer is much
like the autonomy experienced by a university faculty member—freedom to choose

260 ETHICAL INTEREST IN FREE AND OPEN SOURCE SOFTWARE

which projects to work on. Thus, an open source developer has increased autonomy
compared to a corporate developer. Whereas the corporate developer might find a
supportive social structure to takeaproject in anewdirection, the social structure in the
Open Source community works to suppress this type of entrepreneurial endeavor.

10.3.2 Economic Foundations for OSS

In The Magic Cauldron, Raymond explores the economic foundations of OSS. He
continues the discussion touched upon in Homesteading the Noosphere of how OSS,
largely a gift culture, can economically sustain itself in an exchange economy and
presents his analysis fromwithin this context. Themotivation for this essay came from
the realization that most OSS developers are now working in a mixed economic
context. Raymond distinguishes between the “use value” of a program, which is its
economic value, and the “sale value,“which is its value as a final good. He dispels the
myths about the “factory model” of software, in which software is analogous to a
typical manufactured good, because most software is not written for sale but rather in-
house for specific environments. He states, “First, codewritten for sale is only the tip of
the programming iceberg. In the premicrocomputer era it used to be a commonplace
that 90% of all the code in the world was written in-house at banks and insurance
companies. This is probably no longer the case—other industries are much more
software-intensive now, and the finance industry�s share of the total must have
accordingly dropped—but we�ll see shortly that there is empirical evidence that
approximately 95% of code is still written in-house” (Raymond, 2002). Raymond
examines the contradiction that software is really a service industry that is masquerad-
ing as a manufacturing industry. Consequently, he maintains that consumers lose
because price structures replicate a manufacturing scenario even though they do not
reflect actual development costs. In addition, vendors do not feel obligated to offer
support, as their profit does not come from help center service. Open source offers an
economic challenge to this model. “The effect of making software �free,� it seems, is to
force us into that service-fee-dominated world—and to expose what a relatively weak
prop the sale value of the secret bits in closed-source software was all along”
(Raymond, 2002). If one conceives of OSS as a service model, then consumers would
benefit. Raymond cites the example of ERP (Enterprise Resource Planning) systems
that base their price structure on service contracts and subscriptions and companies
such as Bann and Peoplesoft, thatmakemoney from consulting fees (Raymond, 2002).

In seeking to create an economicmodel forOSS,Raymond tackles the notion of the
commons, which at first glancemight seem to apply to a cooperative community such
asOSS.He rejects themodel of the commons, callingOSS an inverse commonswhere
software increases in value as users add their own features, “The grass grows taller
when it�s grazed upon” (Raymond, 2002). Maintenance costs and risks are distributed
among the coders in the project group.

According to Raymond, sale value is the only thing threatened by a move from
closed to open source. He cites twomodels in which developer salaries are funded out
of use value: the Apache case of cost sharing and the Cisco case of risk spreading. He
demonstrates that by encouraging a group ofOSS programmers towork cooperatively

WHY OSS FLOURISHES 261

to build abettermodel in a shorter time thanone couldbuild it onone�s own, companies
getmore economic value, andmitigate the riskof losing employeeswhodeveloped the
programandmight change jobs.WithOSS, the companynowhas a sustainable pool of
developers. Because most of this software has no sale value, but rather supports the
infrastructure of the company, OSS developers are getting paid to support use value of
software. This model has emerged with the Linux for-profit companies such as Red
Hat, SuSE, and Caldera (Raymond, 2002). Raymond stresses that a large payoff from
open source peer review is high reliability and quality (see Section 10.3.3). Another
salient point that Raymond makes is that because the shelf life of hardware is finite,
support stops. For those users who continue to use the hardware, having access to the
source codemakes their lives a lot easier. In a sense, he says, you are “future-proofing”
by using OSS.

Bruce Perens takes up the discussion of the economics of OSS in his article The
Emerging Economic Paradigm of Open Source. Perens examines three paradigms of
economic development: the retail paradigm, in which the developer hopes to recover
costs from the sale of the finished product; the in-house or contract paradigm, inwhich
programmers are paid for creating custom software; and the open source paradigm.As
an advocate for the third paradigm, Perens points out theweaknesses in the other two.
For retail, he states that because of its low efficiency (funding software development
via retail softwarepurchases is lower than5%) this paradigmcanonlybe economically
feasible if products are developed for a mass market.Whereas the second paradigm is
more efficient (50–80%) as it directs “most of each dollar spent toward software
development,” this software only has a success rate of 50%because the software often
fails to meet the customer�s goals (Perens, 2006).

These weaknesses disappear with the Open Source paradigm, as contributors are
developing a useful product that companies or individuals need. Like Raymond, he
emphasizes that the remuneration to the open source software developermay not be as
direct as that of the commercial developer; yet, because more than 70% of software is
developed as service for customers, there is still a monetary return for OSS pro-
grammers (Perens, 2006). Perens distinguishes between technology that makes a
companyproductmore desirable to its customers (differentiating) and technology that
supports the infrastructure and is general enough so that competitors can knowabout it
(nondifferentiating). Most software is nondifferentiating. Thus, for companies that
need software to support their infrastructure, and when that software does not
differentiate the business, the OSS community offers reliability, peer review, and
sustainability. If a company is not large enough or does not have enough experience to
develop software competitively, then open source is a smart alternative. Open source
programmers are finding that, more than a hobby, they can get paid by companies such
asRedHat, O�Reilly, andVALinux Systems towork full time on open source projects.
An additional bonus is the absence of advertising costs in OSS software. “The major
expense is the time-cost of employee participation” in mature OSS projects (Perens,
2006). In addition, new and creative additions to the software are constantly being
developed. Perens describes various ways of using open source within a company:
GNU/Linux distribution companies, companies that develop a single open source
programas theirmain product such asMySQL,hardwarevendors such as IBMandHP,

262 ETHICAL INTEREST IN FREE AND OPEN SOURCE SOFTWARE

end-user businesses such as e-Bay, the government, and academics (see Perens).
Perens asserts that OSS is self-sustaining because “[i]t is funded directly or indirectly
as a cost-center itemby the companies that need it” (Perens, 2006).BothRaymondand
Perens conclude that companies will be willing to pay for the creation of open source
for nondifferentiating software. If a company wishes to produce a retail piece of
software, then the OSS paradigm will not work. Because the majority of software is
nondifferentiating, there will be opportunity for open source collaboration.

10.3.3 The Quality of OSS

Quality software, in the traditional sense, is software that meets requirement speci-
fications, is well-tested, well-documented, and maintainable (Schach, 2002). Advo-
cates of OSS claim that its developers/users are motivated to do quality work because
they are developing software for their own use; their reputations among their peers are
at stake. Critics of OSS claim that volunteers will not do professional-quality work if
there is no monetary compensation. This has become a rather outdated argument. As
we have seen above, there are many who are employed by companies to write open
source code and others who are paid to customize it. Critics also claim that
documentation and maintenance are nonexistent. Although it is true that documenta-
tion and maintenance are concerns, OSS advocates maintain that OSS meets users�
requirements, is tested by its developers, and is constantly being upgraded. Docu-
mentation evolves asmore andmoreusers become interested in the software anduse it.
For example, books on Linux can be found everywhere.

The question of whether OSS is of higher or lower quality than comparable
commercial software is essentially an empirical rather than philosophical question.
The answer to this question is not readily available, but we can cite some anecdotal
evidence on this issue. The Apacheweb server is OSS that competes with commercial
web servers. The web server market is a potentially lucrative one, and we expect
commercial software developers to compete in thatmarketwith high-quality software.
Yet, despite commercial alternatives, the OSS Apache server is by far the most used
web server. Since August 2002, regular surveys have demonstrated that over 60% of
web servers on the Internet are Apache (Netcraft, 2006). At least in this market
segment, it appears that OSS is sufficiently and consistently high quality for many
users. Of course, Apache is free and other servers are not; the cost motivation might
explain some of Apache�s popularity. But if the Apache server were of significantly
lower quality than commercial alternatives, then it would be surprising to see its
widespread use. This raises the question of whethermarket dominance and popularity
shouldbeabenchmark for softwarequality.Does the fact thatMicrosoftWindows runs
on some 90%of home computers assure us of its quality? Popularity and qualitymight
be linked if it canbe shown that there is a level of expertise about software quality in the
people making the choices. System administrators have more expertise than an
average user of a home computer system. Therefore, when a majority of these
professionals choose an OSS alternative, it deserves notice.

Another piece of evidence is a study byCoverity, a companywhose software is used
to detect numerous types of known software defects (Chelf, 2006). In March 2006 the

WHY OSS FLOURISHES 263

company released a report describing its results of analyzing 32 OSS packages. The
defect rate ranged from 0.051 to 1.237 (defects per 1000 lines of code) with an average
of 0.434. The defect rate in the better-known packages (Linux, Apache, MySQL, Perl,
Python, andPHP)was an even lower at 0.290.Coverity also published the defects that it
found, and in a month over 1000 of the initial 7500 defects had been fixed. Since that
time, 17 more OSS packages have been added to the analysis, and of the 49 total
packages, 11 have none of the defects for which Coverity searches and the remaining
38packages have an average defect rate of 0.232 (Accelerating, 2006). This is evidence
that some OSS developers take code quality seriously and strive to improve it.

The nature of proprietary software makes a fair comparison difficult. Published
defect rates for commercial software vary widely, anywhere from 1 to 30, but it seems
safe to say that the evidence suggests that at least these popular OSS packages have
defect rates that are on par with their commercial counterparts. An earlier study that
compared three unnamed proprietary software packages to Linux, Apache, and gcc
(the GNU Complier Collection) concluded that the open source projects “generally
have fewer defects than closed source projects, as defects are found and fixed more
rapidly” (Paulson et al., 2004). A final piece of corroborating evidence is that even
though Coverity offers a free analysis for proprietary code that competes with any of
the OSS projects, no similar results are available.

10.3.4 The Ethical Responsibilities of Software Developers

Both open source and proprietary developers share the professional ethical responsi-
bility to develop solid, well-tested code. However, the influences on open source
software developers to maintain this ethic differ substantially. Proprietary software
establishes a strong distinction between developers and consumers. An interesting
aspect of OSS is that this distinction can be less pronounced, suggesting that ethical
models for analyzing that relationship need to be different.

Most obviously, when developers and users of OSS neither get nor give payment,
financialself-interest isnolongeramajorconcern.Developersarenot“using”consumers
to get their money. Users are not trying to negotiate an unfair deal for software. Instead,
both developers and consumers in OSS are cooperating freely in the OSS project.

The social pressure in the open source community to avoid code forking provides
incentives for project leaders to ensure that the code is the best it can be. On the
contrary, when an open source developer believes there is too much risk associated
with a particular piece of code, he/she can rewrite it and release it. Although there is a
reputation risk in doing so, there is the opportunity to publicly demonstrate that the
forked product is superior.

Because a developer (or group of developers) typically runs an OSS project and is
responsible for making decisions about the design of the software and the quality of the
code, he/she is ultimately responsible for the “penumbra”9 (all peoplewho are under the

9In the case of proprietary software, software developers and others in the corporate structure share the
burden of care for users and the penumbra. In the case of OSS, that responsibility falls entirely upon the
software developers.

264 ETHICAL INTEREST IN FREE AND OPEN SOURCE SOFTWARE

influence of a piece of software whether they realize it or not (Collins et al., 1994)).
Curiously, the interests of the penumbra are closely tied to the life of an OSS project.
When a project is in its early stages, the initial users are often the developers and they
may be more tolerant of glitches and defects than is acceptable for the penumbra.
However, as the project matures, its longevity becomes closely tied to quality. If the
quality is not high enough, the project will likely terminate quickly becausewithout any
marketingmoneybehind theproject, itwill not develop the stronguser support it takes to
make an OSS project successful. As an OSS project increases its market share, those
OSSdevelopers are increasinglyobligated toconsider their responsibilities to thepeople
who use and are affected by the software. A critique of OSS is that sometimes OSS
developers have pointed to the low price and claimed, “you get what you pay for”when
the software is unreliable. Obviously, the ethical principle of consideration of the public
good is clear: OSS developers have professional responsibilities, even though they are
different from traditional professionals in how their work is rewarded.

OSS developers have a built-in “informed consent” advantage: by definition, OSS
gives users the freedom to examine the source code of the application. Although the
source codemay only be understandable to someOSS users, this transparency of code
(rare in commercial projects) is a fundamentally open stance that encourages a trust
relationship between developers and users. OSS literature advocates a level of
cooperation and “community” forOSS participants that is not encouraged or observed
in, for example, users of shrink-wrapped commercial applications. Thus, the relation-
ship between the developers and the users inOSS is bestmodeled as a trust relationship
between two overlapping groups: the OSS developers on the one hand and the OSS
users on the other. Trust is built in twoways.As the user base grows, nonusers can trust
that the large group of users who find the software to be of sufficient quality suggests
that the software isworthyof consideration.Trust is alsobuilt from the lackof financial
coercion on either side. Users can explore the software without paying for it; if the
users don�t find the software reliable, theycan choose not to use itwithout any financial
loss. It is in thebest interest of thedeveloper to create reliable code in part to sustain his/
her reputation within the open source community (see Grodzinsky et al., 2003) and in
the user community. Thus, both groups gain when reliability increases and when the
groups cooperate in improving the software.

10.3.5 Open Source and Accountability

In her article entitled “Computing and accountability,” Helen Nissenbaum cites four
barriers to accountability: (1) the problem ofmany hands, (2) defects, (3) computer as
scapegoat, and (4) ownership without liability. She asserts that these barriers can
lead to “harm and risks for which no one is answerable and about which nothing is
done” (Nissenbaum, 1994). We will examine how OSS may have addressed barriers
(1) and (2). Both (3) and (4) are general issues. Number (4) is interesting because
almost all software disclaims any warranties. However, OSS does have the advantage
of informed consent mentioned above.

“Where a mishap is the work of �many hands,� it can be difficult to identify who is
accountable because the locus of decision-making is frequently different from the

WHY OSS FLOURISHES 265

mishap�s most direct causal antecedent; that is, cause and intent do not converge”
(Johnson andNissenbaum, 1995).When a developer contributes irresponsible code to
an open source project, however, it is unlikely to be accepted. In addition, current best
open source development practices attribute code to specific authors. So, there is built-
in individual accountability for each code segment and the overall software package.
Therefore, the many hands problem can be reduced in OSS because parts of code can
be ascribed to various developers and their peers hold them accountable for their
contributions.

Nissenbaum argues that accepting defects as a software fact of life raises account-
ability issues. “If bugs are inevitable, then how canwe hold programmers accountable
for them?” she asks. The open source approach to software development treats the
defect problem with a group effort to detect and fix problems. The person who finds a
defect in OSSmay not be the person to fix it. Becausemany adept developers examine
OSS code, defects are found and corrected more quickly than in a development effort
in which only a few developers see the code (Paulson et al., 2004). In this group effort,
accountability is not lost in the group, but is instead taken up by the entire group. The
question of whether or not this group accountability is as effective as individual
responsibility is, again, empirical. The Coverity study offers strong anecdotal evi-
dence that someOSS developers take defects seriously and work diligently to remove
them (Chelf, 2006).

Don Gotterbarn is also concerned about issues of professional accountability in
OSS (Wolf et al., 2002). In addition to worries about sufficient care in programming
and maintaining OSS, Gotterbarn points out that an OSS licensing agreement forces
theauthors of the software to relinquishcontrol of the software. If someoneputsOSS to
amorallyobjectionable use, then thedevelopers haveno right towithdraw the software
from that use.10

Gotterbarn�s objection has some theoretical interest, for the OSS licensing agree-
ments clearly state that no one who follows the OSS rules can be blocked from using
the software. But if we accept the idea that software developers have a moral duty to
police the use of the software they distribute, especially when the software is utility
software, we fall into a practical and theoretical thicket. How is a vendor to know the
eventual use of software, especially when the software is utility software (such as an
operating system or a graphics package)? Are software developers empowered to
judge the ethics of each customer or perspective customer? These responsibilities are
overreaching ethically, and far too ambitious in a practical sense.

Furthermore, the relinquishment of control argument has practical significance
only if existing competing software models include effective control over the use of
software. (That is, should OSS be held to a higher standard than commercial software
in relation to ethical responsibility for downstreamuse?)We are unaware of any action
by existing commercial software vendors to police the uses to which their software is
put. Commercial software vendors are certainly concerned that people who use their
software have paid for it. Once paid, vendors slip quietly away.

10Curiously, GPLv3 deals with this issue head-on for a single objectionable use: DRM.

266 ETHICAL INTEREST IN FREE AND OPEN SOURCE SOFTWARE

10.4 IS OSS A PUBLIC GOOD?

Stallman (2001) notes that the notion of copyright was developed in response to the
(corporate) ability to mass-produce creative works, and societies establish copyright
laws to promote the production of creative works. He argues that the notion of free
software, and by extension open source software, is a return to the pre-printing press
days when anyone (with time) could make a copy of a book. A similar notion of freely
sharing ideas has also persisted in academia as well. Academia has long had the
tradition of sharing ideas without direct payments. Scholarly journals do not pay
authors (and in fact may charge them for pages printed). Law has not protected
mathematical formulae and formal descriptions of natural laws. Copyright covers the
expression of ideas, but not the ideas themselves; patent has (at least traditionally)
protected the practical application of ideas, but not the physical laws underlying the
ideas. So, if software is viewed as an extendedmathematical object, akin to a theorem,
then OSS could be a natural extension of the long tradition of free ideas in
mathematics. Does that make it a public good?

PeterKollock, a sociologist at theUniversityofCalifornia atLosAngeles, examines
the idea of online public goods in his paper entitled “The economies of online
cooperation: gifts and public goods in cyberspace” (Kollock, 1999). He defines public
goods as those things that are nonexcludable and indivisible.Because theOpenSource
Definition prohibits discrimination against persons or groups or against fields of
endeavor, it supports thedefinitionofapublic goodbeingnonexcludable. Public goods
in cyberspace can benefit the users of cyberspace irrespective of whether they have
contributed to these goods or whether these goods have come from groups or
individuals. The fact that one person using OSS does not affect its availability to the
whole supports Kollack�s idea of indivisibility. He maintains that “[a]ny piece of
informationpostedtoanonlinecommunitybecomesapublicgoodbecausethenetwork
makesit available to thegroupasawholeandbecauseoneperson�s �consumption�of the
information does not diminish another person�s use of it” (Kollock, 1999). If a user
downloadsacopyofGNU/Linux, for example, shedoesnotdiminish its availability for
other users. So by this definition, we argue that OSS is a public good.

Is there an active interest among developers to create a public good? Are OSS
developers actuallymotivated todogoodbycontributing software to thepublic, andby
maintaining it in a group effort? Some developers argue that they can customize OSS,
and if others find the customizations useful, then they have provided a public good.
However, there could be another possible motivation for OSS. It might be a philo-
sophical or instinctive animus toward existing commercial software developers.
Bertrand Meyer recites with dismay the many negative statements by OSS advocates
about commercial software development and developers (Meyer, 2001). Some see
“Microsoft bashing” as a central theme of the OSS movement. Because most
Microsoft products compete directly with OSS packages, some friction between
OSS advocates and the largest commercial software corporation seems inevitable. But
if OSS development is motivated primarily by its opposition to commercial software
producers, then its ethical underpinnings are less benign than if OSS is motivated
primarily by an altruistic desire to help computer users.Because theOSSmovement is,

IS OSS A PUBLIC GOOD? 267

bydesign, decentralized and evolving, it seems impossible to gaugewith anyprecision
the motivations of all its members (Hertel et al., 2003). But the often-repeated disdain
for commercial businesspractices seemsmore in tunewith thehacker culture thanwith
a cultureofaltruism.So,wewouldargue that, for themost part, the altruism involved in
the creation of a public good in the case of OSS is more of a by-product of developers
who are interested in creating tools that are of use for themselves. Customization and
expansion of Linux, for example, came from developers whowanted applications for
their own use and then shared their code.

Nowhere can OSS be considered more of a public good than in the academic
community. Computer Science departments are expected to be on the cutting edge of
technology in their curricular offerings. The price of commercial software, even with
educational discounts, often straps a department�s budget. Academic institutions have
strong financial motivations to adopt open source software. GNU compilers, for
example, have largely replaced proprietary versions. GNU/Linux is appearing as the
operating system of choice, often replacing Solaris. As more and more applications
run on GNU/Linux, universities will have less incentive to buy from Unix platform
vendors. They will buy cheaper hardware and run GNU/Linux. One caveat to this
scenario is the availability of staff who can support the GNU/Linux platform and the
availability of documentation for OSS.

Service learning, a concept that is becoming part of the mission of many higher
education institutions, also influences the choice between open source software and
proprietary software. Consider a scenario in which a software engineering class is to
produce a piece of software for a local charity. The choice between open source
alternatives and proprietary alternatives is not to be taken lightly. Seemingly, open
source software makes good sense for both the students and the charitable
organization. The cost is low and, presumably, the quality is sufficient. Yet there
are long-term costs that are faced by the charity (as well as any businessmaking such
a choice). How expensive will it be to maintain the software? Is there enough open
source expertise available to maintain it? And, finally, what documentation and user
training can be expected if OSS is the software of choice? Some ongoing support to
these charities might be an opportunity for the university to openly support OSS as a
public good.

10.5 CONCLUSION

The distinction between Free Software and Open Source Software has had a positive
effect on the software development community and on the larger online community as
well. Regardless of the motivation of individual developers, it is difficult to find fault
with their willingness to give their creative contributions to the world to study and
adapt as theworld sees fit. Stallman�s increasingly clear focus on freedom for all users
of software and hardware has forced discussion on issues thatmany people today have
not considered. Elevating discussion of the social purpose of copyright to an
international level is valuable. Raymond and Perens� ability to articulate the necessary
and sufficient aspects of software freedom that contribute to developing quality

268 ETHICAL INTEREST IN FREE AND OPEN SOURCE SOFTWARE

software has been an important part of improving the quality of software that society
uses. There is some suggestion that, regardless ofwhether the quality of FS andOSS is
high, the mere possibility that it is higher than that of some proprietary software has
prompted some proprietary software developers to adopt techniques and processes
that lead to better software, again benefiting everyone. Finally, the Free Software
movement can be credited with providing an impetus for establishing notions of
freedom for other types of digital media, such as the Creative Commons (creative-
commons.org).

ACKNOWLEDGMENTS

In composing this chapter, we drew some material from Grodzinsky, F.S., Miller, K.,
and Wolf, M.J. (2003), “Ethical issues in open source software,” Journal of Informa-
tion, Communication and Ethics in Society, I(4), 193–205, Troubadour Publishing,
London, and our paper (2006), “Good/fast/cheap: contexts, relationships and profes-
sional responsibility during software development,”Proceedings of the Symposium of
Applied Computing; 2006 April.

REFERENCES

Accelerating open source quality. Available at http://scan.coverity.com/. Accessed 2006
July 24.

Benklar, Y. (2002). Coase�s Penguin, or, Linux and the Nature of the Firm. Yale Law Journal,
112, 369–466.

Bonaccorsi, A. and Rossi, C. (2004). Altruistic individuals, selfish firms? The structure of
motivation in Open Source Software. First Monday, 9(1). Available at http://firstmonday.
org/issues/issue9_1/bonaccorsi/index.html. Accessed 2006 July 25.

Chelf, B. (2006). Measuring software quality: a measure of open source software. Available at
http://www.coverity.com/library/index.html, registration required. Accessed 2006 July 24.

Chopra, S. and Dexter, S. (2005). A comparative ethical assessment of free software licensing
schemes. Proceedings of the Sixth International Conference of Computer Ethics:
Philosophical Enquiry (CEPE2005), Enschede, The Netherlands, July.

Collins, W.R., Miller, K., Spielman, B. and Wherry, P. (1994). How good is good enough?
An ethical analysis of software construction and use. Communications of the ACM, 37(1),
81–91.

Free Software Foundation (1991). GNU general public license. Available at http://www.gnu.
org/licenses/gpl.txt. Accessed 2006 July 19.

GPLv3 1st discussion draft (2006). Available at http://gplv3.fsf.org/gpl-draft-2006-01-16.
html. Accessed 2006 August 7.

GPLv3 2nd discussion draft (2006). Available at http://gplv3.fsf.org/gpl-draft-2006-07-27.
html. Accessed 2006 August 7.

Grodzinsky, F.S., Miller K., and Wolf, M.J. (2003). Ethical issues in open source software.
Journal of Information, Communication and Ethics in Society, I(4), 193–205.

REFERENCES 269

Hertel, G., Neider, S., and Herrmann, S. (2003). Motivation of software developers in open
source projects: an Internet-based survey of contributors to the Linux kernel. Research
Policy, 32, 1159–1177.

Himma, K.E. (2006). Justifying intellectual property protection: why the interests of content-
creators usually wins over everyone else�s. In: Rooksby, E. and Weckert, J. (Eds.),
Information Technology and Social Justice, Idea Group, pp. 54–64.

Himma, K.E. (2008). The justification of intellectual property rights: contemporary philo-
sophical disputes. Perspectives on Global Information Ethics. Journal of the American
Society for Information Science and Technology, 59(7).

Johnson, D.J. andNissenbaum,H. (Eds.) (1995).Computers, Ethics and Social Values. Prentice
Hall, New Jersey.

Kollock, P. (1999). The economies of online cooperation: gifts and public goods in cyberspace.
In: Smith, M. and Kollock, P. (Eds.) (1999), Communities in Cyberspace. Routledge,
London.

Meyer, B. (2001). The ethics of free software.Dr. Dobb�s Portal. Available at http://www.ddj.
com/dept/architect/184414581. Acessed 2006 July 19.

Moglen, E. (2006). The hardware wars. The Free Software Foundation Bulletin, 8 June.

Netcraft (2006). July 2006 Web server survey. Available at http://news.netcraft.com/archives/
web_server_survey.html. Accessed 2006 July 24.

Nissenbaum, H. (1994). Computing and accountability. Communications of the ACM, 37(1),
72–80.

Paulson, J., Succi, G., and Eberlein, A. (2004). An empirical study of open-source and closed-
source software products. IEEE Transactions on Software Engineering, 30(4), 246–256.

Perens, B. (2002). Debian Social Contract. Available at www.debian.org/social_contract.html.
Accessed 2006 July 19.

Perens, B. (2006). The Emerging Economic Paradigm of Open Source. Available at http://
perens.com/Articles/Economic.html. Accessed 2006 March 1.

Raymond, E.S. (2000). Homesteading the Noosphere. Available at http://www.catb.org/esr/
writings/homesteading/homesteading/. Accessed 2006 July 19.

Raymond, E.S. (2001). The cathedral and the bazaar. In: Spinello and Tavani (Eds.), Readings
in Cyberethics. Jones and Bartlett, Sudbury, MA.

Raymond, E.S. (2002). The Magic Cauldron, Version 2.0. Available at http://www.catb.org/�
esr/writings/cathedral-bazaar/magic-caulddron/index.html. Accessed 2006 June 06.

Schach, S. (2002).Object Oriented and Classical Software Engineering, 5th edition. McGraw
Hill, p. 137.

Stallman, R. (1985). The GNU Manifesto. Available at http://www.gnu.org/gnu/manifesto.
html. Accessed 2006 July 19.

Stallman, R. (1992). Why Software Should Be Free. Available at http://www.gnu.org/philoso-
phy/shouldbefree.html. Accessed 2006 July 19.

Stallman, R. (1994). Why Software Should Not HaveOwners. Available at http://www.gnu.org/
philosophy/why-free.html. Accessed 2006 July 19.

Stallman, R. (1998). Why “Free Software” is Better than “Open Source”. Available at http://
www.gnu.org/philosophy/free-software-for-freedom.html. Accessed 2006 July 19.

Stallman,R. (2001). Copyright versus community in the age of computer networks. Available
at http://www.gnu.org/philosophy/copyright-versus-community.html. Accessed 2006
August 8.

270 ETHICAL INTEREST IN FREE AND OPEN SOURCE SOFTWARE

Stallman, R. (2002). Linux, GNU, and Freedom. Available at http://www.gnu.org/philosophy/
linux-gnu-freedom.html. Accessed 2006 July 19.

The Open Source Definition (2006). Version 1.9. Available at http://www.opensource.org/
docs/definition.php. Accessed 2006 July 20.

Torvalds, L. (2006a). Re: Linux vs. GPL v3—dead copyright holders. Linux-kernel mail
archives, January 25, 2006. Available at http://www.ussg.iu.edu/hypermail/linux/kernel/
0601.3/0559.html. Accessed 2006 July 20.

Torvalds, L. (2006b). Re: Linux vs. GPL v3—dead copyright holders. Linux-kernel mail
archives, January 27, 2006. Available at http://www.ussg.iu.edu/hypermail/linux/kernel/
0601.3/1489.html. Accessed 2006 July 20.

Watson, B. (1999). Philosophies of Free Software and Intellectual Property. Available at http://
www.ram.org/ramblings/philosophy/fmp/free-software-philosophy.html. Accessed 2006
July 19.

Wolf, M.J., Bowyer, K., Gotterbarn, D., and Miller, K. (2002). Open source software:
intellectual challenges to the status quo. Panel presentation at 2002 SIGCSE Technical
Symposium, SIGCSE Bulletin, 34(1), 317–318. Available at www.cstc.org/data/resources/
254/wholething.pdf.

REFERENCES 271

