
COMP105 Lecture 18

Voting Examples



Voting: first past the post

In a first past the post election, whoever gets the most votes wins

ghci> winner ["red", "blue", "red", "red", "green"]

"red"



Getting the candidates

First we need to figure out who the candidates are

uniq [] = []

uniq (x:xs) = x : uniq (filter (/=x) xs)

ghci> uniq ["red", "red", "blue", "green", "red", "blue"]

["red","blue","green"]



Counting the votes

This function counts the number of votes for a particular candidate

count x list = length (filter (==x) list)

ghci> count "red" ["red", "blue", "red", "red", "blue"]

3



Vote totals

totals votes =

let

candidates = uniq votes

f = (\ c -> (count c votes, c))

in

map f candidates

ghci> totals ["red", "blue", "red", "red", "blue"]

[(3,"red"),(2,"blue")]



Finding the winner

Recall: tuples are ordered lexicographically

ghci> max (3, "red") (2, "blue")

(3,"red")

ghci> maximum [(3, "red"), (2, "blue"), (4, "green")]

(4,"green")



Finding the winner

winner votes = snd . maximum . totals $ votes

ghci> winner ["red", "blue", "red", "red", "green"]

"red"



Alternative vote

In the alternative vote system, voters rank the candidates

I In each round, the candidate with the least number of first
preference votes is eliminated

I The winner is the last candidate left once all others have been
eliminated

ghci> let votes = [["red", "blue", "green"],

["blue", "green"],

["green", "red"],

["blue", "red"],

["red"]]

ghci> av_winner votes

"red"



Getting the first choice votes

first_choice votes = map head votes

ghci> let votes = [["red", "blue", "green"],

["blue", "green"],

["green", "red"],

["blue", "red"],

["red"]]

ghci> first_choice votes

["red","blue","green","blue","red"]



Ranking the candidates

import Data.List

rank votes = (sort . totals . first_choice) votes

ghci> let votes = [["red", "blue", "green"],

["blue", "green"],

["green", "red"],

["blue", "red"],

["red"]]

ghci> rank votes

[(1,"green"),(2,"blue"),(2,"red")]



Removing a losing candidate

remove_cand c votes =

let

rm_votes = map (filter (/=c)) votes

rm_empty = filter (/=[]) rm_votes

in

rm_empty

ghci> remove_cand "green" votes

[["red","blue"],["blue"],["red"],["blue","red"],["red"]]

ghci> remove_cand "red" votes

[["blue","green"],["blue","green"],["green"],["blue"]]



Putting it all together

av_winner votes =

let

ranked = rank_candidates votes

first = head ranked

in

if length ranked == 1

then first

else av_winner (remove_cand first votes)

ghci> av_winner votes

"red"


