
COMP105 Lecture 18

Higher Order Programming Example



Mark averages

We have a file of student marks

I For assignment 1, 2, 3, and the class test

aaaa 70 65 67 60

bbbb 55 60 55 65

cccc 40 40 40 40

dddd 80 60 75 60

cccc 0 0 0 100



Mark averages

We want to produce a file of mark averages

aaaa 65.5

bbbb 58.75

cccc 40.0

dddd 68.75

cccc 25.0



Reading files in Haskell

We can read a file using readFile

I This is an IO function

I We will study this in more detail later on

ghci> readFile "marks.csv"

"aaaa 70 65 67 60\nbbbb 55 60 55...

The '\n' character is the newline character



lines

The function lines gives us a list of lines

ghci> lines "line 1\nline 2\nline 3\n"

["line 1","line 2","line 3"]

ghci> file <- readFile "marks.csv"

ghci> lines file

["aaaa 70 65 67 60",

"bbbb 55 60 55 65", ...



unlines

The unlines function does the opposite

ghci> unlines ["line 1", "line 2", "line 3"]

"line 1\nline 2\nline 3\n"

ghci> unlines . lines $ file

"aaaa 70 65 67 60\nbbbb 55 60 55 65



Parsing the file

Using words and lines we can parse the file

ghci> let parsed = map words . lines $ file

ghci> parsed

[["aaaa","70","65","67","60"],

["bbbb","55","60","55","65"],

["cccc","40","40","40","40"],

["dddd","80","60","75","60"],

["cccc","0","0","0","100"]]



Getting the averages

average :: [String] -> Float

average [student, a1, a2, a3, ct] =

(read a1 + read a2 + read a3 + read ct) / 4

ghci> let averages = map average parsed

ghci> averages

[65.5,58.75,40.0,68.75,25.0]



Getting the student names

name :: [String] -> String

name [student, _, _, _, _] = student

ghci> let names = map name parsed

ghci> names

["aaaa","bbbb","cccc","dddd","cccc"]



Creating the report

report_line :: String -> Float -> String

report_line student average =

student ++ " " ++ show average

ghci> let zipped = zipWith report_line names averages

ghci> zipped

["aaaa 65.5",

"bbbb 58.75",

"cccc 40.0",

"dddd 68.75",

"cccc 25.0"]



Writing the output file

ghci> unlines zipped

"aaaa 65.5\nbbbb 58.75\ncccc 40.0\n..."

ghci> writeFile "report.csv" (unlines zipped)



All in one function

report file =

let

parsed = map words . lines $ file

students = map name parsed

averages = map average parsed

zipped = zipWith report_line students averages

in

unlines zipped


