
COMP105 Lecture 10

Cracking the Caesar Cipher

Cracking the Caesar cipher

How would we crack this text?

"ukq sehh jaran xa wxha pk zaykza pdeo iaoowca"

The letter frequencies for the English language

The letter frequencies for the cipertext

The letter frequencies for the cipertext shifted by 22

Cracking the Caesar cipher

Let’s guess that the message was shifted by 22

ghci> let msg = "ukq sehh jaran xa wxha pk zaykza

pdeo iaoowca"

ghci> caesar_dec msg 22

"you will never be able to decode this message"

Cracking the Caesar cipher

Idea:

I Try decoding the text with a particular offset

I Compute the letter frequencies for the decoded text

I Check if the frequencies are close to the English frequencies

How to tell if two frequency lists are close?

I Use the chi-squared score:

z∑
i=a

(freqi − englishi)
2

englishi

I The chi-squared score will be lower when freq is close to
english

Cracking the Caesar cipher

Algorithm:

I Try all 26 possible shifts

I For each one compute the letter frequency distribution of the
decoded text, and the chi-squared score

I Use the shift with the lowest chi-squared score to decode the
string

Exercise

I Think about how you would code this in Haskell

Counting frequencies in strings

count _ [] = 0

count c (x:xs)

| c == x = 1 + rest

| otherwise = rest

where rest = count c xs

freq c list = fromIntegral (count c list) /

fromIntegral (length list)

ghci> count 'a' "aabaa"

4

ghci> freq 'a' "aabaa"

0.8

Getting the table of frequencies for a string

get_freqs _ 26 = []

get_freqs string c = freq (int2char c) string

: get_freqs string (c + 1)

ghci> get_freqs "abc" 0

[0.33333334,0.33333334,0.33333334,0.0,0.0,...

get freqs returns a table with exactly 26 elements

Implementing the chi-squared score

z∑
i=a

(freqi − englishi)
2

englishi

chi_squared [] [] = 0

chi_squared (x:xs) (y:ys) =

(x - y)**2/y + chi_squared xs ys

ghci> chi_squared [0.1, 0.9] [0.8, 0.2]

3.0624998

The table of English frequencies

eng_freqs = [0.0855, 0.0160, 0.0316, 0.0387, 0.1210,

0.0218, 0.0209, 0.0496, 0.0733, 0.0022,

0.0081, 0.0421, 0.0253, 0.0717, 0.0747,

0.0207, 0.0010, 0.0633, 0.0673, 0.0894,

0.0268, 0.0106, 0.0183, 0.0019, 0.0172,

0.0011]

Getting the chi-squared score for a string

chi_squared_string string =

let

string_freqs = get_freqs string 0

in

chi_squared string_freqs eng_freqs

ghci> chi_squared_string "hello there"

1.5819808

Getting the list of chi-squared scores for a string

chi_squared_list _ 26 = []

chi_squared_list string i =

let

decoded = caesar_dec string i

score = chi_squared_string decoded

in

(score, decoded) : chi_squared_list string (i+1)

ghci> chi_squared_list "ifmmp" 0

[(9.637143,"ifmmp"),(4.4730797,"hello"),

(22.258533,"gdkkn"),(76.40909,"fcjjm"),...

Finding the offset with the lowest score

get_best [(score, string)] = (score, string)

get_best ((score, string):xs) =

let

(tail_score, tail_string) = get_best xs

in

if score < tail_score

then (score, string)

else (tail_score, tail_string)

ghci> get_best (chi_squared_list "ifmmp" 0)

(4.4730797,"hello")

Tieing it all together

caesar_crack string =

let

scores = chi_squared_list string 0

(score, best) = get_best scores

in

best

ghci> caesar_crack "lbh jvyy arire qrpbqr guvf"

"you will never decode this"

