
COMP105 Lecture 6

List Comprehensions

List comprehensions

List ranges can produce simple arithmetic sequences

List comprehensions can produce more complex lists

ghci> [x*x | x <- [1..10]]

[1,4,9,16,25,36,49,64,81,100]

ghci> [x / 10 | x <- [2,4..10]]

[0.2,0.4,0.6,0.8,1.0]

List comprehensions

You can add predicates to a list comprehension

ghci> [x*x | x <- [1..10], x*x > 40]

[49,64,81,100]

ghci> [x*x | x <- [1..10], x*x > 40, x*x < 80]

[49,64]

ghci> [x*x | x <- [1..10], 2*x > 10]

[36,49,64,81,100]

You can have any number of predicates, and they can test anything

List comprehensions in functions

The body of a function can be a list comprehension

evens_less_than y = [x | x <- [0..(y-1)], x `mod` 2 == 0]

ghci> evens_less_than 10

[0,2,4,6,8]

lt10 xs = [if x < 10 then "Yes" else "No" | x <- xs]

ghci> lt10 [8..11]

["Yes","Yes","No","No"]

Multiple variables

You can use more than one sublist in a list comprehension

ghci> [x*y | x <- [2,5,10], y <- [8,10,11]]

[16,20,22,40,50,55,80,100,110]

ghci> [x*y | x <- [2,5,10], y <- [8,10,11], x*y > 50]

[55,80,100,110]

List comprehension examples

join xs ys = [x ++ " " ++ y | x <- xs, y <- ys]

ghci> join ["big", "hot", "red"] ["dog", "ball", "car"]

["big dog","big ball","big car","hot dog","hot ball",

"hot car","red dog","red ball","red car"]

List comprehension examples

removeLowercase st = [c | c <- st, c `elem` ['A'..'Z']]

ghci> removeLowercase "The Big Dog"

"TBD"

List comprehension examples

length' xs = sum [1 | _ <- xs]

ghci> length' [2,4..100]

50

List comprehension examples

factors n = [x | x <- [1..n], n `mod` x == 0]

ghci> factors 100

[1,2,4,5,10,20,25,50,100]

primes n = [x | x <- [1..n], length (factors x) == 2]

ghci> primes 40

[2,3,5,7,11,13,17,19,23,29,31,37]

Lists of lists

There is no problem with lists of lists

I But all sublists must hold the same types

ghci> let x = [[1,2,3],[4],[5,6]]

ghci> head x

[1,2,3]

ghci> tail x

[[4],[5,6]]

ghci> length x

3

Nested list comprehensions

You can even nest list comprehensions

f xxs = [[x | x <- xs, even x] | xs <- xxs]

ghci> f [[1,2,3],[4],[5,6]]

[[2],[4],[6]]

List comprehensions in other languages

List comprehensions arose in the functional programming world

I But they have appeared in imperative languages

For example, Python allows list comprehensions:

squares = [x**2 for x in range(10)]

[x.lower() for x in ["A","B","C"]]

Exercises

1. Write a function cubesupto that takes one parameter x and
returns the cubes of all numbers between 1 and x

2. Write a function nospaces that takes a string and returns a
copy of that string will all spaces removed

3. Write a function allpairs that takes two numbers x and y

and returns all pairs of numbers (a, b) where 1 <= a <= x

and 1 <= b <= y

