
COMP105 Lecture 5

Lists

Lists

A list contains items that all have the same type

Examples:

[1, 2, 3, 4, 5]

['a', 'b', 'c', 'd', 'e']

["Quite", "a", "lot", "of", "words"]

The following will give an error:

[1, "two", 3, "four"]

Lists

A list can have any number of elements, including zero

[]

[1]

[1, 2]

You can join lists with the ++ operator

ghci> [1,2,3] ++ [4,5,6]

[1,2,3,4,5,6]

Strings

In Haskell, a string is just a list of characters

ghci> ['a', 'b', 'c']

"abc"

Any operation that you can do on a list can also be done on a
string

ghci> "Hello" ++ " World!"

"Hello World!"

List indexing

The !! operator gets a specified element from the list

I Lists are zero-indexed

ghci> [1, 2, 3, 4, 5] !! 1

2

Note that Haskell lists are linked lists

I This means that random access is expensive

I Internally Haskell will walk the entire list to get the last
element

Processing Lists

Since Haskell uses linked lists we usually process lists from the
front

The head of a list is its first element

ghci> head [1,2,3,4,5]

1

The tail of a list is everything but the first element

ghci> tail [1,2,3,4,5]

[2,3,4,5]

Processing Lists

The : operator glues a new head onto an existing list

ghci> 1 : [2,3,4,5]

[1,2,3,4,5]

In fact we can build up lists using nothing but : and []

ghci> 'a' : ('b' : ('c' : []))

"abc"

Processing Lists

We can also process lists from the back

The function last gives the last element of the list

ghci> last [1,2,3,4,5]

5

The function init gives everything but the last element of the list

ghci> init [1,2,3,4,5]

[1,2,3,4]

These are like head and tail for the back of the list

Writing our own list functions

Lists can be passed as parameters to functions

double_head list = 2 * head list

ghci> double_head [1,2,3]

2

We can also make use of pattern matching to get the head of the
list

triple_head (x:xs) = 3 * x

ghci> triple_head [3,2,3]

9

Pattern Matching

triple_head (x:xs) = 3 * x

When you pass a list to the function, Haskell will match it using
x:xs

I x will be bound to the head of the list

I xs will be bound to the tail

If the pattern cannot be matched, then you will get an error

ghci> triple_head [1]

3

ghci> triple_head []

*** Exception

Pattern matching

Pattern matching is quite flexible

mult_first_two (x:y:xs) = x * y

Here x is bound to the first element and y is bound to the second
element

If you don’t care about an argument you can use the wildcard
pattern

double_second (_:y:_) = 2 * y

Useful list functions

ghci> length [1,2,3]

3

ghci> reverse [5,4,3,2,1]

[1,2,3,4,5]

ghci> sum [5,2,1,6,3,2,5,7]

31

ghci> product [6,2,1,2]

24

Useful list functions

take returns the first x elements of a list

ghci> take 3 [5,4,3,2,1]

[5,4,3]

drop returns all but the first x elements of a list

ghci> drop 3 [5,4,3,2,1]

[2,1]

Useful list functions

elem returns True if the specified element is in the list

ghci> elem 4 [3,4,5,6]

True

ghci> elem 10 [3,4,5,6]

False

It is perhaps more naturally used as an infix operator

4 `elem` [3,4,5,6]

10 `elem` [3,4,5,6]

Exercises

1. Write a function thricesum that takes a list of numbers and
returns three times its sum

2. Use pattern matching to write a function thirdelement that
takes a list and returns the third element of the list (do not
use !!)

3. Write a function exclaim that takes a string and returns a
copy of that string with the '!' character at the start and
end. So exlaim "hi" will return "!hi!"

