COMP105 Lecture 3

Writing Our Own Functions

Defining your own functions

So far we've just used the interpreter to evaluated predefined
functions.

For the most part we will program in Haskell by defining our own
functions

We do this by saving our functions in a file, and then loading them
into ghci

Alternatively we can compile our file to create a runnable program

A first function

Let's write a function that adds two to its input

addTwo x = x + 2

We can save it in our_code.hs and then load into ghc

Prelude> :1 our_code.hs
[1 of 1] Compiling Main
Ok, modules loaded: Main.
*Main> addTwo 2

4

Function syntax

The syntax for defining a function is

function_name arg_1 arg 2 arg 3 ... = body

Where
> function_name must start with a small letter
» all arguments must start with small letters

P> body is some expression

An expression is a combination of functions
» Anything you can type into ghci is an expression

> Think of it as an imperative function that immidiately uses
return <something>

Examples of functions

addTwo x = x + 2

addSquares x y = x**2 + y**2

maxThree x y z = max (max x y) z

Further example
Converting a two-bit binary number b; by to decimal:
by * 21 + by % 20

So 11 in binary becomes 1 x 241 =3

In Haskell:
pow2 x = 27x

bin_to_dec bl b2 = bl * pow2 1 + b2 * pow2 O

Comments

It's a good idea to comment your code

-— A single line comment looks like this
1 +1 -- It can go after code on the same line

{- A multi-line comment uses this syntazx
It can
go accross
many lines -}

Comparison with imperative languages

Compared to imperative languages, functions in Haskell tend to
look much shorter

» Imperative functions do lots of things. Set up variables, go
around loops, etc.

> Since we only care about the return value of a function, the
body tends to be much shorter, because the function usually
only does one thing

It will take time to get used to the idea of

f x y z = <one thing>

Compilation

Instead of loading into ghci, we could also compile our code
addTwo x = x + 2

main = putStrLn (show (addTwo 4))

» show turns its input into a string
» putStrLn prints out a string (side effect!)

» main is the function that will be run by our program

This is 1/O code, which we will not cover until later in the course

» For now it's fine to stick with ghci

Where are we?

We have so far seen how to
» Do basic maths in Haskell
» Use some predefined functions

» Write our own functions

This allows us to use Haskell as a fancy calculator
» Of course it can do much more
» We will expand on this base of knowledge over the coming

weeks
> We will unlock the full power of the language when we start
doing recursion

Exercises

1. Write a function double that takes one argument x and
returns two times x

2. Write a function pythagoras that takes arguments a and b,
and returns the square root of a squared plus b squared. The
sqrt function in prelude will give a square root

3. Write a function maxFour that takes four arguments and
returns the maximum of them

